应用光学, 2015, 36 (5): 742, 网络出版: 2015-12-18   

基于纹影法的聚焦超声声场重建算法研究

Reconstruction algorithm for focused ultrasonic fields based on schlieren method
作者单位
重庆医科大学 生物医学工程学院 省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室 重庆市生物医学工程学重点实验室, 重庆 400016
摘要
为了从聚焦超声声场纹影图像直接重建声场声压分布图像, 首先根据水中声波与光波的作用规律, 利用Zernike相衬技术得到纹影系统中空间声压分布与纹影图像中光强的关系, 再通过纹影系统获得聚焦超声声场实时图像, 最后根据纹影系统的物理特性经过反投影重建算法重建出凹球壳聚焦超声换能器的空间声压分布。分析可知, 理论声焦域横向与声轴大小分别为0.15 mm、1.4 mm, 重建声场电功率为12 W时横向最接近为0.25 mm,30 W时声轴最接近为1.35 mm。与球壳换能器的理论声压分布进行对比的结果表明, 该方法具有一定可行性, 可以用于聚焦超声换能器的声场分布检测。
Abstract
In order to rebuild the pressure distribution from the schlieren image of focused ultrasound field directly, relationship was presented firstly between the spatial distribution of sound pressure and the intensity of schlieren image getting by Zernike phase contrast system based on the acousto-optic effect. Then the real-time sound image of focused ultrasound was obtained by the schlieren system. Due to the physical property of schlieren system, the spatial sound pressure distribution of a concave spherical shell focused ultrasonic transducer could be reconstructed by using a back-projection reconstruction algorithm lastly. According to analysis, when the electric power is 12 W, the horizontal size of reconstruction focal region is 0.25 mm closest to the theoretical 0.15 mm and when the electric power is 30 W, the acoustic axis size of reconstruction focal region is 1.35 mm closest to the theoretical 1.4 mm. Results compared with the theoretical sound pressure distribution of the spherical shell transducer show that this method has certain feasibility for ultrasonic transducer measurement.
参考文献

[1] 姜学平, 程茜, 钱梦騄. 纹影法对声场成像的理论和实验研究[J]. 声学技术, 2011, 30(05): 1-4.

    Jiang Xueping, Chen Xi, Qian Menglu. Theoretical and experimental investigation of imaging the acoustic fields by schlieren techniques[J]. Technical Acoustics, 2011, 30(05): 1-4.

[2] Torras-Rosell A, Barrera-Figuera S, Jacobsen F. Sound field reconstruction using acousto-optic tomography[J]. Acoustical Society of America, 2012, 131(5): 3786-3793.

[3] Kudo N, Sanbonmatsu Y, Shimizu K. Microscopic visualization of high-frequency ultrasound fields using a new method of schlieren photography[C]. US: IEEE, 2010: 829-832.

[4] Chinnery P A, Humphrey V F, Beckett C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. Acoustical Society of America, 1997,101(1): 250-256.

[5] 朱卫民. 一种基于光学技术的超声场测量方法研究[J]. 计量技术, 2013, 5: 16-18.

    Zhu Weimin. A study on measurement of ultrasound field based on optical technology[J]. Measurement Technique, 2013, 5: 16-18.

[6] Remenieras J P, Matar O B, Calle S, et al. Acoustic pressure measurement by acousto-optic tomography[C]. US: IEEE, 2001: 505-508.

[7] Settles G S. Schlieren and shadowgraph techniques: visualizing phenonmena in transparent media[M]. New York: Springer, 2001: 25-28.

[8] Moller D, Degen N, Dual J. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrason.ic particle manipulation[J]. Journal of Nanobiotechnology, 2013, 11(1): 1-5.

[9] Unverzagt C, Olfert S, Henning B. A new method of spatial filtering for schlieren visualization of ultrasound wave fields[J]. Physics Procedia, 2010, 3(1): 935-942.

[10] Zhu Guozhen, Lu Kean, Fu Deyong, et al.Experiments on two kinds of threshold for the acoustic pressure gradient of a schlieren system[J]. Measurement Science and Technology, 2002, 13(4): 483-487.

[11] Brownlee C, Pegoraro V, Shankar S, et al. Physically-based interactive flow visualization based on schlieren and interferometry experimental techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11): 1574-1586.

[12] 苏显渝,李继陶, 曹益平,等.信息光学[M].2版.北京: 科学出版社, 2011, 207-208.

    Su Xianyu,Li Jitao,Cao Yiping,et al. Information optics[M].2nd ed. Beijing: Science Press, 2011: 207-208.

[13] 单子娟, 王定兴, 李正直. 一种激光纹影仪的光学特性[J]. 光学学报, 1984, 4(10): 880-886.

    Shan Zijuan, Wang Dingxing, Li Zhengzhi. Properties of a laser schlieren system[J]. Acta Optica Sinica, 1984, 4(10): 880-886.

[14] Harvey G, Gachagan A, Mcnab A. Ultrasonic field measurement in test cells combining the acousto-optic effect, laser interferometry & tomography[J]. Proc. IEEE Ultrason. Symp, 2004, 2: 1038-1041.

[15] Holm A, Persson H W, Lindstrom K. Optical diffraction tomography of ultrasonic fields with Algebraic Reconstruction Techniques[J]. Proc. IEEE Ultrason. Symp, 1990, 2: 685-688.

[16] 黄力宇.医学成像的基本原理[M]. 北京: 电子工业出版社, 2009: 99-102.

    Huang Liyu. Basic principle of medical imaging[M]. Beijing: Publishing House of Electronics Industry, 2009: 99-102.

[17] 张德俊.高强度聚焦超声换能器[J].中国超声诊断杂志, 2000, 1(2): 1-4.

    Zhang Dejun. High intensity focused ultrasound transducer[J]. Chinese Journal of Ultrasound Diagnosis, 2000, 1(2): 1-4.

陆彦邑, 刘俏俏, 赵纯亮, 沈勇, 王华. 基于纹影法的聚焦超声声场重建算法研究[J]. 应用光学, 2015, 36(5): 742. Lu Yanyi, Liu Qiaoqiao, Zhao Chunliang, Shen Yong, Wang Hua. Reconstruction algorithm for focused ultrasonic fields based on schlieren method[J]. Journal of Applied Optics, 2015, 36(5): 742.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!