激光技术, 2023, 47 (5): 708, 网络出版: 2023-12-11  

基于高光谱激光雷达的绿萝叶绿素3维重建

3-D reconstruction of chlorophyll content of epipremnum aureum based on hyperspectral LiDAR
作者单位
1 安徽建筑大学 电子与信息工程学院, 合肥 230601
2 安徽建筑大学 安徽省古建筑智能感知与高维建模国际联合研究中心, 合肥 230601
3 北京航空航天大学 无人机系统研究院, 北京 100191
4 淮南师范学院 电子工程学院, 淮南 232038
摘要
为了准确重建正反面叶片叶绿素3维分布, 利用高光谱激光雷达, 采集了不同生长状态的绿萝叶片与植株的空间-光谱域点云数据, 设计了一种基于分类预测的重建方法。通过偏最小二乘回归构建叶片正面与反面光谱的叶绿素含量预测模型, 采用光谱自适应阈值选择方法实现植株点云中叶片正反面的分类, 并根据类别标签选择模型计算叶绿素含量, 重建植株的叶绿素3维分布。结果表明, 该方法得到的植株叶绿素3维分布更接近真实值, 决定系数达到0.69, 均方根误差为4.97。这一结果可为植物表型研究提供新的数据基础和理论方法。
Abstract
In order to accurately reconstruct the 3-D chlorophyll distribution of adaxial and abaxial leaves, the leaves and plants of epipremnum aureum in different growth states were selected as the experimental samples, whose spatial-spectral point cloud data were acquired by hyperspectral light detection and ranging (LiDAR), and a reconstruction method based on classification and prediction was designed. Chlorophyll content prediction models of adaxial and abaxial leaves were constructed by the partial least squares regression modeling method, to calculate the chlorophyll of different leaves, adaxial and abaxial leaves were classified with the spectral adaptive threshold selection method, and then the plant 3-D distribution of chlorophyll was reconstructed. The results show that this reconstruction method can obtain the predicted value with a coefficient of determination 0.69 and a root mean square error 4.97, which is closer to the true value. This result will provide a basis and theoretical approach for plant phenotypes research.
参考文献

[1] GITELSON A A, VIA A, VERMA S B, et al. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D08S11.

[2] YANG M W. Study on rapid determination of chlorophyll content of leaves[J]. Chinese Journal of Spectroscopy Laboratory, 2002, 19(4): 478-481(in Chinese).

[3] SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2-3): 337-354.

[4] di VITTORIO A V. Enhancing a leaf radiative transfer model to estimate concentrations and in vivo specific absorption coefficients of total carotenoids and chlorophylls a and b from single-needle reflectance and transmittance[J]. Remote Sensing of Environment, 2009, 113(9): 1948-1966.

[5] MATTHEWS M W, BERNARD S, ROBERTSON L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters[J]. Remote Sensing of Environment, 2012, 124: 637-652.

[6] LIU Sh, YU H Y, ZHANG J H, et al. Study on inversion model of chlorophyll content in soybean leaf based on optimal spectral indices[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1912-1919(in Chinese).

[7] WANG F D, YAN Zh Y, ZHAO X M, et al. Parameter selection of partial least squares model for hyperspectral estimation of chlorophyll content in Camellia oleifera leaves[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(1):86-96(in Chinese).

[8] ZHANG J, LI Y, XIE J, et al. Research on optimal near-infrared band selection of chlorophyll (SPAD) 3-D distribution about rice plant[J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3749-3757(in Chinese).

[9] WANG X, WANG Z T, YOU W Q, et al. Estimation of chlorophyll content by reflectance spectra of the positive and negative blades[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2524-2528(in Chinese).

[10] EITEL J U H, VIERLING L A, LONG D S. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner[J]. Remote Sensing of Environment, 2010, 114(10): 2229-2237.

[11] ZHANG Zh J, WANG Ch, ZHANG H, et al. Analysis of permafrost region coherence variation in the Qinghai-Tibet Plateau with a high-resolution TerraSAR-X image[J]. Remote Sensing, 2018, 10(2): 298.

[12] CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon[J]. Remote Sensing of Environment, 2020, 251: 112102.

[13] HOSOI F, OMASA K. Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning LiDAR with a lightweight mirror[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74: 11-19.

[14] EITEL J U H, VIERLING L A, LONG D S. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner[J]. Remote Sensing of Environment, 2010, 114(10): 2229-2237.

[15] BI K, XIAO S, GAO S, et al. Estimating vertical chlorophyll concentrations in maize in different health states using hyperspectral LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8125-8133.

[16] DU L, JIN Z, CHEN B, et al. Application of hyperspectral LiDAR on 3-D chlorophyll-nitrogen mapping of rohdea japonica in laboratory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9667-9679.

[17] SHAO H, CAO Z, LI W, et al. Feasibility study of wood-leaf separation based on hyperspectral LiDAR technology in indoor circumstances[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 15: 729-738.

[18] UDDLING J, GELANG-ALFREDSSON J, PIIKKI K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings[J]. Photosynthesis Research, 2007, 91(1): 37-46.

[19] JIN X, ZHU X Zh, LI Sh W, et al. Predicting soil available phosphorus by hyperspectral regression method based on gradient boosting decision tree[J]. Laser & Optoelectronics Progress, 2019, 56 (13): 131102(in Chinese).

[20] GAULTON R, DANSON F M, RAMIREZ F A, et al. The potential of dual-wavelength laser scanning for estimating vegetation moisture content[J]. Remote Sensing of Environment, 2013, 132: 32-39.

[21] NEJAT K, SHI Q D, WANG J Zh,et al. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 208-216(in Chinese).

[22] GONG W, SHI Sh, CHEN B W, et al. Development and prospect of hyperspectral LiDAR for earth observation[J]. National Remote Sensing Bulletin, 2021, 25(1): 501-513(in Chinese).

[23] ZHANG C H, ZHANG X J, ZHU D Zh, et al. Detection of chlorophyll content of wheat leaves based on laser scattering images[J]. Laser Technology, 2012, 36(4): 459-462(in Chinese).

汪慧民, 邵慧, 孙龙, 李伟, 王程, 陈杰, 朱家兵. 基于高光谱激光雷达的绿萝叶绿素3维重建[J]. 激光技术, 2023, 47(5): 708. WANG Huimin, SHAO Hui, SUN Long, LI Wei, WANG Cheng, CHEN Jie, ZHU Jiabing. 3-D reconstruction of chlorophyll content of epipremnum aureum based on hyperspectral LiDAR[J]. Laser Technology, 2023, 47(5): 708.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!