中国激光, 2024, 51 (1): 0114001, 网络出版: 2024-01-19  

太赫兹量子级联激光器与量子阱探测器研究进展(特邀)创刊五十周年特邀

Recent Progress in Terahertz Quantum Cascade Lasers and Quantum Well Detectors (Invited)
作者单位
中国科学院上海微系统与信息技术研究所集成电路材料全国重点实验室,上海 200050
摘要
太赫兹量子级联激光器和太赫兹量子阱探测器都是基于子带间电子跃迁的半导体器件,具有体积小、频率可调、响应速度快等优点。其工作波长位于微波波长和红外波长之间,其光谱涵盖了众多气体分子、化合物以及凝聚态物质的频谱特征,在天文观测、公共安全、生物医药等领域中有重大应用前景。近年来,太赫兹量子级联激光器和太赫兹量子阱探测器的性能有了显著提高,其应用也受到关注。回顾了太赫兹量子级联激光器和量子阱探测器的发展历程,简述了其工作原理和器件结构,介绍了器件性能在工作温度、光谱范围等方面的最新进展及其在高分辨光谱、太赫兹成像、无线宽带通信等方面的应用,并在此基础上分析了目前存在的问题和研究热点,对其未来发展进行了展望。
Abstract
Significance

Generally, the terahertz (THz) radiation spectrum is defined as the electromagnetic spectrum between 100 GHz to 30 THz (wavelength of 3 mm‒10 μm). THz waves have a wide bandwidth and low photon energy, their energy spectra cover the vibrational-rotational characteristics of numerous molecules, and THz waves can penetrate many non-polar media. These properties make them attractive for astronomical observations, public safety, biomedicine, and wireless communication. According to the different generation and detection methods of THz waves, THz technology can be divided into two categories: one is based on electronic technology-mainly related to microwaves in the low-frequency THz band, and the other is based on optical and photonics technology-mainly related to infrared light at higher frequencies. Further technical developments will bridge the gap between electronics and optics, enabling new THz spectroscopy and imaging methods for scientific exploration in physics, chemistry, biology, materials, devices, engineering, and other interdisciplinary fields.

Terahertz quantum cascade lasers (THz QCLs) and terahertz quantum-well photodetectors (THz QWPs) are semiconductor devices based on electron transitions within subbands. These devices are advantageous due to their small size, adjustable frequency, and fast response time. Over the past few years, their performance has improved and many techniques related to high-resolution spectroscopy, terahertz imaging, and wireless broadband communication have received considerable attention. Here, we review recent advances and discuss future research directions.

Progress

THz QCLs are the only practical and compact laser systems at this frequency and have significant impacts on the THz field. The first THz QCL was developed in 2002. After more than 20 years of development, device performance has made significant progress, including the emission frequency range from 1.2 THz to 5.6 THz, the maximum output power of 2.4 W, a single mode continuously tuning range of 650 GHz, a broad bandwidth of 2.6 THz, the maximum operating temperature of 261 K, and a great improvement in far-field beam quality (Figs. 3 and 4). The development of phase-locking technology has significantly improved the frequency stability of lasers, with the linewidth reaching a quantum limit of 100 Hz. This technology has been employed in high-resolution spectroscopy (Figs. 8 and 9). THz QCLs exhibit strong optical nonlinearity and short inter-subband transition lifetime, resulting in various applications. Room-temperature THz laser radiation is demonstrated through intra-cavity difference frequency generation in mid infrared lasers. Moreover, scientists have achieved active mode-locking, optical frequency combs, high-order wave mixing, inter-subband plasmons, and fast modulation and detection. These technologies have also been successfully used in metrology and THz imaging (Figs. 10 and 11).

THz QWPs are an extension of quantum-well infrared detectors to the THz band, with advantages such as fast response speed and small size. In 2004, the first THz QWP was successfully developed with a central detection frequency of 7.1 THz. Subsequently, by adjusting the energy of inter-subband transitions, the spectral response of THz QWP gradually covered the range of 1.5‒7.5 THz and 8.8‒15.0 THz. However, it is well documented that THz QWPs require low-temperature conditions, usually below 10 K, because the thermally activated current can rapidly exceed the photocurrent at high temperatures. Recently, the combination of device structure and metamaterials has effectively increased the operating temperature of the device to 60 K (Fig.7). In terms of applications, high-speed imaging and information transmission are demonstrated in the THz QCL and THz QWP systems (Fig.12), and THz QWPs are also used in broadband spectral measurements and nonlinear two-photon detection.

Conclusions and Prospects

THz QCLs and THz QWPs have a significant impact on the THz field; however, their large-scale applications have not been realized. Currently, improving the high-temperature performance of devices is one of the main challenges because thermally excited carriers can obtain sufficient kinetic energy for transport between subbands at high temperatures. THz QCLs demolish the population inversion, whereas THz QWPs lead to an increase in the dark current. Additionally, a further increase in the frequency range poses challenges. Expanding to the low-frequency side becomes increasingly difficult owing to further reduction in photon energy, whereas expanding to the high-frequency side is limited by the reststrahlen band. The investigation of new active region designs, low-loss waveguide materials, metasurface structures, and photonic crystals is expected to improve the device performance. Moreover, wide-bandgap materials such as GeSi and quantum dots can be chosen for high-temperature devices. Additionally, high-power and low-noise optical frequency combs and ultrashort THz pulse technology have garnered considerable attention. Notably, understanding the phase relationship between the comb teeth and the mechanisms of pulsed operation can be helpful. Saturation absorbers based on inter-subband polaritons and harmonic combs have also been presented. THz QCLs with topological structures have opened up new directions. Topological structures result in unidirectional propagation of light, immunity to defects, and high-order light field regulation. Topological protection can facilitate the development of robust laser arrays, and topological chirality can modify far-field beam patterns and polarization for novel photonic devices.

The application and commercialization of THz QCLs and THz QWPs will become a driving force for the development of new methods for high-resolution spectroscopy, hyperspectral imaging, and terahertz communication. THz QCLs and THz QWPs combined with near-field microscopy can be employed for nanometer scale detection and used in fields such as material science and biomedicine.

1 引言

太赫兹(THz)辐射波长(3 mm~10 μm)介于微波和红外波长之间,THz辐射通常定义为频率在100 GHz~30 THz区间的电磁波。THz波的带宽宽、光子能量低,其能量谱线涵盖了众多分子的振动-转动特征,并且THz波可以穿透很多非极性介质,这些特性使THz波在光谱、成像、通信等领域中具有广阔的应用前景1-3。特别是近年来THz科学与技术的迅速发展,使得THz波在许多有价值的领域中显示出实用性,例如机场安全检查、天文探测、大气成分监测、药品及航天涂层检验、半导体集成电路故障诊断等4-8。当前,无线通信技术正在从5G时代进入6G时代,为了满足日益增长的带宽需求,通信频段也正在向高频方向拓展。随着无线通信技术的发展,电信技术也有望从微波频段过渡到太赫兹频段9。可以预见,THz技术的实用化和商业化,将是未来推动THz领域发展的核心动力之一。按照THz波的产生和检测方法的不同,THz技术可以分为两类:一类基于电子学技术,主要与THz波段较低频率端的微波有关;另一类基于光学和光子学技术,主要与较高频率端的红外光相关。太赫兹波段位于电子学和光学领域的交汇区域,其所涉及的物理、化学、生物、材料、器件、工程及交叉学科等众多领域,也将在光电融合方面迎来全新的科学发现和技术进步。

太赫兹量子级联激光器(THz QCL)是一种半导体激光器,基于量子结构中的子带间的电子跃迁,属于光子型器件,是目前该频率下唯一实用且紧凑的激光系统,对THz领域的影响巨大。第一个THz QCL于2002年研制成功10,经过二十多年的发展,器件性能获得了巨大的提高,其频率已经覆盖了从1.2 THz11到5.6 THz的频率范围12,最高输出功率达到2.4 W13,单模连续可调的范围达到650 GHz14,单管辐射带宽达到2.6 THz15,最高工作温度达到261 K16,远场光斑特性也得到显著改善17。在应用方面,锁相技术的发展使得激光的频率稳定性也大大提高18-23,可观测的半峰全宽已经达到量子极限,为100 Hz24,该技术已经应用于高分辨光谱的测试25。子带间跃迁寿命短、光学非线性效应强,利用电子的超快输运特性,可实现THz QCL的主动锁模26、快速调制27以及超快检测28;利用非线性效应,通过四波混频可实现THz光频梳29;通过中红外激光器腔内差频,可实现室温THz激光辐射30以及高阶波混合31、子带间等离子体激元等32。这些技术也已成功应用于计量学33与THz成像34等。

太赫兹量子阱探测器(THz QWP)也是基于子带间跃迁的半导体光电探测器,是量子阱红外探测器向THz波段的延伸,具有响应速度快、易集成等优点。2004年,第一个THz QWP研制成功,中心探测频率为7.1 THz35。随后,通过调节子带间跃迁的能量,THz QWP的光谱响应逐渐覆盖了1.5~7.5 THz 和8.8~15.0 THz范围36。THz QWP需要工作在低温(通常10 K以下)条件下,随着温度的升高,热激发形成的电流迅速超越光电流,造成器件性能下降或失效,如何抑制热激发产生的电流和如何增加光电流是THz QWP设计过程中时刻面临的问题。最近,研究者通过将器件结构与超材料相结合,有效地提高了器件的工作温度,达到60 K37。在应用方面,研究者将THz QWP与THz QCL相结合,进行了高速成像和信息传输的演示38,THz QWP也实现了高速调制39和非线性双光子探测40

本文聚焦THz QCL和THz QWP的原理和最新进展,主要从以下三个方面进行介绍:1)THz QCL的原理、有源区结构与波导结构以及器件性能的进展;2)THz QWP的原理、器件结构以及器件性能的进展;3)与THz QCL和THz QWP相关的应用的进展。最后讨论了THz QCL和THz QWP研究面临的问题并展望了其未来发展前景。

2 太赫兹量子级联激光器

THz QCL是基于子带间跃迁的半导体激光器,与传统的半导体激光器相比,主要有以下三个特点:一是子带的结构与量子限制的尺寸相关,可以通过改变量子阱的尺寸来调节子带间的能量差,从而突破半导体材料的禁带宽度限制,在难以到达的THz频率范围内实现激光辐射。频率调节的灵活性也可以使THz QCL覆盖更宽的频谱范围。二是级联结构,即THz QCL的有源区是由多个周期结构相互连接构成的,一个电子可以在多个周期内跃迁产生多个光子,从而实现超高的量子效率和大功率输出。三是子带的色散关系相近,避免了带间激光器由于色散不同而出现线宽展宽,THz QCL也因此具有更窄的线宽。THz QCL的有源区和波导是决定器件性能的基本要素,本小节接下来将主要介绍THz QCL的有源区和波导结构以及器件性能的研究进展。

2.1 有源区结构

THz QCL的有源区为器件提供增益,实现光放大。依据电子注入和抽运的特点,有源区结构主要分为四种类型。在第一种类型中,电子注入和抽运主要依靠共振隧穿或者微带中的电子-电子散射等过程,其特点是电子输运控制精确,寄生电流小。如图1(a)所示,束缚态向连续态跃迁(B-to-C)结构就是这个类型的典型结构41,能级2为激光上能级,位于两个微带之间,被称为束缚态,能级1为激光下能级,位于第一个微带顶部,电子可以快速输运至微带底部,并注入到下个周期的激光上能级。采用该结构的器件大多具有较低的阈值电流密度,有利于器件工作于连续模式和低功耗状态。在第二个类型中,电子注入依靠共振隧穿过程,抽运采用纵光学(LO)声子散射,其特点是电子抽运能力强。如图1(b)所示,共振声子结构就属于这一类型16,激光下能级与抽运能级之间的能量间隔较大,为一个LO声子的能量,强烈的LO声子散射使激光下能级上的电子快速输运至注入能级,再通过共振隧穿进入到下一周期的激光上能级。采用该结构的器件可以实现大的增益,有利于器件的温度特性提高,目前THz QCL的最高工作温度就是由该有源区结构的器件来实现的。第三个类型是第一个类型和第二个类型相结合的结果,电子注入采用共振隧穿方式,电子抽运采用微带输运附加光学声子散射的方式,图1(c)所示的复合结构就属于这一类型42。注入能级3与微带的底部相隔一个LO声子的能量,该能级的加入大大增强了微带的抽运能力。采用该结构的器件兼顾了低阈值电流密度和高输出功率的特点,综合性能较好,连续工作模式下的大功率器件多采用这一结构。在第四个类型中,电子注入采用LO声子散射方式,声子散射注入型和抽运控制型结构43都属于这个类型。如图1(d)所示,注入能级3与激光上能级2相隔一个LO声子能量,电子的注入不再依靠共振隧穿。采用该结构的器件具有强的电子注入能力,可以在低频和高温条件下保持有效的电子注入。尽管目前采用该结构的器件的工作温度未能达到理论预期,但其在低频器件中已经显示出优势44

图 1. 有源区能带结构图。(a)束缚态向连续态跃迁结构41;(b)共振声子结构16;(c)复合结构42;(d)抽运控制型结构43

Fig. 1. Band structures of active regions. (a) Bound-to-continuum structure[41]; (b) resonant phonon structure[16]; (c) hybrid structure[42]; (d) extraction-controlled structure[43]

下载图片 查看所有图片

THz QCL结构复杂,电子输运涉及多个子带间的多种散射机制45-52,如电子-电子散射、电子-声子散射以及电子-杂质散射等,同时THz QCL有源区的势垒较厚,退相干效应也影响电子的输运过程53,因此,THz QCL的有源区设计需要有效的电子输运模拟。目前,研究THz QCL载流子的方法主要有以下四种:第一种是率方程方法54,需要代入子带间的散射几率,最为简便;第二种为蒙特卡洛方法55,可以实时计算子带间的各种散射机制下的散射率,模拟精度更高;第三种是密度矩阵方法56,通过斜对角项,可以获得退相干效应的影响;第四种是格林函数方法57,基于量子理论,最为复杂也最为精确。尽管上述方法都能在一定程度上模拟THz QCL中的电子输运,但依然需要发展更为准确的算法和模型,特别是对电流-电压曲线的模拟还有待完善。

2.2 波导结构

波导的作用是将光场限制在增益区域实现光放大。从红外到THz波段,光的波长变长,自由载流子吸收变强,红外激光器常用的重掺杂介质波导不再适用。新型的THz波导结构也是THz QCL成功研制的关键,目前THz波导有两种类型:半绝缘衬底-表面等离子体(SISP)波导和金属-金属(MM)波导81058,如图2所示。在SISP波导中,太赫兹光被限制在顶部金属接触层和底部等离子体层之间,重掺杂的GaAs衬底被半绝缘GaAs衬底和一层薄的重掺杂层取代,避免了光场和重掺杂衬底之间的重叠,从而减少了自由载流子吸收和波导损耗;在MM波导中,有源区夹在两层金属之间,即将SISP波导中的半绝缘衬底用金属层替代,从而显著增大了光场的限制因子。

图 2. 波导结构、光场模式分布和光束轮廓图8。(a)半绝缘衬底-表面等离子体波导;(b)金属-金属波导

Fig. 2. Waveguide structures, light field mode distributions, and beam profiles[8]. (a) Semi-insulating substrate-surface plasma waveguide; (b) metal-metal waveguide

下载图片 查看所有图片

这两种波导结构各有优缺点,可以根据不同的需求选取合适的结构。SISP波导的优点是工艺简单、激光的出射效率高、远场光斑的质量较好,缺点是光场限制因子低,因此采用该波导的器件,激光辐射功率大,但工作温度较低。MM波导的优点是限制因子高,缺点是工艺复杂、激光辐射效率低、远场光斑质量差,采用该结构的器件一般工作温度较高。另外,波导金属材料也会影响波导损耗。一般情况下,采用金作为波导金属,其优点是稳定性好、工艺兼容性好;铜和银作为波导金属也已被报道59-61,并且显示出更低的波导损耗。

2.3 器件性能进展

近年来,THz QCL的器件性能取得了显著的进步,接下来将根据子带间跃迁的特点,从频率特性、激光辐射功率以及工作温度等方面介绍THz QCL器件性能的重要进展。

THz QCL的频率可以通过改变量子阱尺寸进行灵活调节,其频率特性主要表现在激光频率、宽谱性能以及单模调谐范围等方面。在激光频率方面,尽管THz QCL的频率可以在很宽的范围内灵活调节,但由于电子输运受到子带间各种散射的影响,在低频端和高频端实现激光辐射依然困难。在起始阶段,THz QCL的激射频率大多在2~5 THz区间1162。在低频端,Walther等11通过优化电子注入和抽运的选择性以及抑制激光能级间的散射,实现了1.2 THz的激光辐射;随后Wade等63通过外加磁场,进一步削弱了激光能级间的散射,将激射频率降至0.68 THz;近期,多个小组在高频端取得突破,在大于5 THz的多个频点处实现了激射,最高脉冲激射频率达到5.6 THz12,单模连续激射最高频率为5.1 THz64,如图3(a)所示。在宽谱性能方面,Turčinková等65率先采用三个有源区结构相叠加的方法,制备了宽谱器件,带宽达到1 THz;通过改进器件工艺,Rösch等66-67进一步将带宽拓展至1.9 THz;其他研究组采用不同的有源区结构,也实现了超过1 THz带宽的激光辐射1568,如图3(b)所示。在单频调谐方面,THz QCL主要通过改变与激光腔长相关的参数来实现大范围的连续调节,如利用渐逝边缘场耦合69和微腔耦合结构70分别实现了330 GHz和162 GHz的单模连续调节。但这些方法受到模式跳变的影响。2019年,Curwen等1471采用超表面材料的垂直腔表面发射结构,利用短外腔有效地增加了自由光谱范围,避免了模式跳变,并以3.47 THz为中心,实现了单模650 GHz、最大880 GHz的连续调谐和高达25%的大比例调谐,如图3(c)所示。最近,研究者在非厄米器件中,仅仅通过改变偏置电压,实现了80 GHz的单模连续调节。

图 3. 激光光谱图。(a)高频单模器件64;(b)宽谱器件15;(c)单模可调器件14

Fig. 3. Laser spectra. (a) High-frequency single-mode device[64]; (b) wide-spectrum device[15]; (c) tunable single-mode device[14]

下载图片 查看所有图片

激光辐射功率是衡量器件性能的最重要的指标之一。最初,THz QCL的功率处于百毫瓦水平,Brandstetter等72通过将对称结构的器件相键合,率先突破了瓦级的功率输出;Li等13利用大尺寸器件,将多模激光器的最高功率进一步提升至2.4 W;随后,多个小组也都报道了超过1 W功率的THz QCL73。单模激光器的功率长期低于多模激光器,2018年,Curwen等74在垂直腔面发射激光器中观察到单模输出,峰值功率达到1.35 W;2020年,Jin等75采用锁相阵列,如图4(a)所示,进一步将单模脉冲功率提高到2.03 W,该研究采用短腔纵向耦合方案,有效提高了辐射效率,实现了每个电子产生115个光子的微分量子效率。

图 4. 不同温度条件下的强度-电流-电压关系图。(a)单模大功率器件75;(b)高温器件16

Fig. 4. Intensity-current-voltage relationship under different temperature conditions. (a) High-power single-mode device[75]; (b) high-temperature device[16]

下载图片 查看所有图片

THz QCL的工作温度较低,这也是限制其商业化的重要原因之一。由于THz QCL的光子能量(10 meV)小,高温乃至室温器件的研制极具挑战。在最初的十多年间,器件只能工作在液氦或液氮制冷的环境下;2019年,Bosco等76将器件工作温度提高到210 K(-63 ℃),达到了热电制冷的条件;随后,Khalatpour等77又将器件的工作温度大幅提高至250 K(-23 ℃),激光器在230 K的热电制冷条件下,可提供数十毫瓦的峰值输出功率,这大大提高了THz QCL的实用性;2023年,如图4(b)所示,研究者再次将温度提升至261 K(-12 ℃)16,工作温度的提高得益于新的有源区设计。

3 太赫兹量子阱探测器

THz QWP是量子阱红外光电探测器(QWIP)向THz波段的扩展,也是一种基于子带间跃迁的低维半导体量子器件,利用光激发的电子从子带的基态跃迁至准连续态的过程实现了光探测,具有结构简单、响应快、性能稳定、易于集成等优点,特别适用于高速检测和高速成像6

3.1 器件结构

THz QWP的探测波长可以通过改变量子结构的尺寸进行调节,与THz QCL相比,其有源区更为简单,为多量子阱结构,如图5(a)所示。当THz光入射时,位于量子阱束缚态的电子受到激发,跃迁到准连续态,在外加电场的条件下形成光电流,入射光的强度可以通过测量光电流的大小来获得。THz QWP的峰值响应频率由束缚态到准连续态的能量间隔决定,可以通过改变势垒的高度、量子阱宽度以及掺杂浓度进行调节。为了保证入射光的吸收效率和大的光电流,有源区的周期数需要进行优化,通常为10~10078

图 5. 量子阱探测器示意图。(a)能带结构图36;(b)表面光栅式器件结构图79;(c)斜角45°入射式器件结构图79

Fig. 5. Schematics of QWP. (a) Band structure[36]; (b) schematic of device with surface gratings[79]; (c) schematic of device with 45° incident facet[79]

下载图片 查看所有图片

THz QWP只能探测具有特定偏振方向的光,即光的偏振方向与量子阱的生长方向垂直,直接垂直入射的光并不能产生光电流。为了得到可探测的偏振分量,THz QWP一般采用两种结构,如图5(b)所示。第一种是布鲁斯特角入射结构,将器件的一个侧边磨成斜角,光斜入射后在器件内被多次反射吸收,该结构工艺简单,适用于宽带器件。另一种是垂直入射结构,利用器件表面的光栅衍射得到可以探测的偏振分量,实现对垂直入射光的探测,该结构探测光路简单,适用于阵列器件。

3.2 器件性能进展

在探测频率范围方面,2004年,第一个THz QWP实现了对7.1 THz波的探测35。2014年,Gu等79对比了45°斜边入射和垂直入射两种器件结构,得到的探测中心频率位于5.85 THz,同时由于非平衡的LO声子产生的局部增强效应,还在纵向光学声子频率(8.87 THz)处发现了一个尖锐的光电流峰。2015年,Franke等80展示了双光子THz QWP,并研究了该探测器的非线性性能,中心频率为5.5 THz。2017年,Wang等81设计并开发了一种双色THz QWP,中心频率为3.75 THz和5.55 THz,光谱半峰全宽达到1.5 THz;2018年又演示了一种宽带电压调节的THz QWP,峰值频率可以从4.5 THz调节到6.5 THz82。THz QWP在接近低频和剩余射线带区域也面临与THz QCL类似的困难。

在提高探测器响应度方面,2013年,Guo等83研究了表面等离子体增强光栅结构和金属微腔结构对探测器耦合效率的影响,理论结果表明,表面等离子体增强光栅结构可以将耦合效率提高30倍,金属微腔结构可以将耦合效率提高100倍。2014年,Zhang等84-85制作了具有不同光栅结构的THz QWP器件,并优化了光栅的尺寸,结果表明,表面光栅耦合垂直入射器件比斜入射器件有更高的峰值响应度,且二维光栅的效果优于一维光栅。如图6所示,二维光栅使器件的峰值响应度提高了146%。同年,Palaferri等86演示了贴片天线结构的THz QWP,在5.0 THz处实现了5×1012 cm·Hz1/2/W的峰值探测率。

图 6. 太赫兹量子阱探测器显微照片和峰值响应曲线85。(a)器件台面的照片;(b)表面二维光栅的照片;(c)峰值响应度与光栅尺寸的关系曲线

Fig. 6. Microscope pictures and peak responsivity curve of THz QWPs[85]. (a) Photo of device table; (b) picture of surface 2D grating; (c) peak responsivity versus grating size

下载图片 查看所有图片

在温度特性方面,近期也取得了重要的进展。Jeannin等37于2020年报道了一种基于三维超材料的太赫兹高温量子阱探测器,将探测器的工作温度提升至60 K。如图7所示,超材料的原胞由天线与电感-电容(LC)谐振器横向耦合组成,吸收区为半导体多量子阱结构,是LC谐振器的一部分。该结构一方面利用高辐射天线提高THz光的收集效率,另一方面利用小体积的LC谐振器增强THz光与吸收区的耦合。实验结果表明,器件的工作温度远超传统的同波段的量子阱探测器。

图 7. 高温太赫兹量子阱探测器37。(a)超材料单元结构示意图;(b)能带结构图;(c)超材料显微照片;(d)谐振器与耦合天线示意图;(e)不同温度条件下的光电流谱

Fig. 7. High-temperature THz QWP[37]. (a) Schematic of metamaterial unit cell; (b) band structure; (c) micrograph of metamaterial; (d) schematic of resonator and coupling antenna; (e) photocurrent spectra at different temperatures

下载图片 查看所有图片

在理论设计方面,Guo等87考虑了多体效应的影响,计算了三种不同的峰值频率,结果表明,多体效应对THz探测器峰值频率的影响远大于红外器件,该方法将峰值检测频率的设计误差从30%降低到5%,提高了THz QWP的设计精度。2015年,Jia等88优化了不同峰值频率下的掺杂浓度,计算结果表明,当引入功率密度为819 W/cm2的太赫兹光束时,器件的光子噪声限性能温度可以提高到77 K以上。

4 太赫兹子带间跃迁器件的应用进展

THz波作为电磁波的一部分,也同其他波段一样,在光谱、成像、信息传输等方面有广泛的应用。本小节将着重介绍与THz QCL和THz QWP相关的技术进展。

4.1 太赫兹高分辨光谱技术

THz QCL线宽窄、输出功率高,而且频率连续可调,这些特性使其在高分辨率光谱应用中占有优势。而气体分子或原子通常具有尖锐的吸收峰,更需要高分辨的光谱技术对其进行检测。这里将围绕气体分子光谱的检测,介绍THz高分辨光谱及锁相技术的研究进展。

目前,基于THz QCL的气体光谱技术研究仍然主要集中在光谱方法的开发上,主要包括直接吸收光谱、外差光谱和光声光谱等,如图8所示。直接吸收光谱结构简单,是最早被采用的测试方案。2006年,Hübers等89采用该技术,利用热探测器测试了甲醇气体的吸收光谱。在此基础上,差分技术及波长和频率调制技术的应用大大提高了该光谱技术的信噪比和灵敏度90-91。2016年,自混频技术的引入使QCL同时作为激光源和探测器,提高了光谱测试速度,又大大降低了系统的复杂性92。多模激光器的使用还有效拓展了光谱范围93。外差光谱利用THz QCL作为本振源,通过本振源与THz信号的差频,获得了光谱信息,主要用于天文探测和遥感。2011年,Ren等94利用该技术测试了气体分子的光谱,中心频率为3.5 THz;2015年,该技术开始应用于欧洲SOFIA计划,在4.7 THz频段对氧原子进行测量,测量范围达到8 GHz95。光声光谱技术是利用音叉对光激发的分子振动进行测试,灵敏度很高,被广泛应用于中红外和近红外波段。2016年,Sampaolo等96利用基于THz QCL的光声光谱,测试了甲醇气体,灵敏度达到了160×10-9

图 8. 太赫兹高分辨光谱方法示意图和测试图8。(a)直接吸收光谱方法示意图;(b)差频探测方法示意图;(c)光声光谱方法示意图;(d)差频方法探测到的氧原子谱线(4.7 THz)

Fig. 8. Schematics of THz high-resolution spectroscopic methods and measured spectrum[8]. (a) Schematic of direct-absorption spectroscopic method; (b) schematic of difference frequency detection method; (c) schematic of photoacoustic spectroscopic method; (d) oxygen atomic line detected by difference frequency method (4.7 THz)

下载图片 查看所有图片

高分辨光谱的分辨率受到THz QCL频率稳定性的影响,一般可以达到1.6 MHz。为了进一步提高分辨率,多种锁相技术被用来提高THz QCL的频率稳定性。2005年,Betz等18将THz QCL与气体激光器锁定,使得THz QCL的半峰全宽减小至65 kHz;后来利用该方法又将半峰全宽进一步降低至4 kHz19。2009年,Rabanus等2097-98利用微波倍频源作为参考信号锁定THz QCL,由于微波源频率稳定性高,该方法将THz QCL的稳定性提高到了100 Hz。2010年,以甲醇气体吸收线作为参考的锁相方法被用于THz QCL,锁定后的半峰全宽达到了51 kHz2199。以光频梳作为参考信号进行锁相的方法也被应用于THz QCL,测得的拍频信号的半峰全宽可以达到1 Hz,但绝对的频率稳定性没有测量22-23。2014年,利用铯原子钟标准频率作为参考的光频梳被用于THz QCL的锁相和甲醇气体的测试,如图9所示,光谱分辨率得到显著提高,达到了10 Hz25

图 9. 基于频梳稳频的QCL的光谱方法示意图25

Fig. 9. Schematic of spectroscopic method with QCL stabilized to frequency comb[25]

下载图片 查看所有图片

4.2 太赫兹成像技术

THz QCL输出功率高,并且可以穿透非极性和非金属介质,再加上THz波段的特性,因此基于THz QCL的成像技术快速发展。基于THz QCL的成像技术按原理可分为非相干成像和相干成像,非相干成像只能获得强度信息,呈现二维图像,而相干成像还可获得相位信息,可以呈现三维图像。目前,非相干成像的研究较多,主要集中在分辨率、成像速度、成像距离等方面。

非相干成像的分辨率与THz QCL发光波长和光束质量有关,大多在亚毫米级别。例如,2004年,Darmo等100率先利用THz QCL对小鼠的脑部成像,分辨率为0.25 mm。2014年,Tan等101使用THz QCL作为光源,演示了金属图案和隐蔽金属叶片的反射成像,获得了0.33 mm的成像分辨率。在提高分辨率方面,2012年,de Cumis等102利用光阑改善了THz QCL的光束质量,如图10(a)所示,获得了70 μm的分辨率。同年,Oda等103开发了一种适用于太赫兹阵列的光学透镜,展示了两根头发丝的显微成像,也达到了相同的分辨率。值得指出的是,将太赫兹QCL与扫描近场光学显微镜相结合,可以突破半波长的限制,使THz成像的分辨率提高至亚微米级别104

图 10. 太赫兹成像图。(a)~(c)照片与THz成像的对比图102106108;(d)QWP-LED与Si CCD相机拍摄的THz QCL光斑像109

Fig. 10. Pictures by THz imaging. (a)‒(c) Comparison of photographs and THz images[102,106,108]; (d) THz QCL spot images taken by QWP-LED and Si CCD camera[109]

下载图片 查看所有图片

初始的THz成像大多采用单点扫描的方式,成像速度较慢,一般在1 pixel/s左右。2013年,Rothbart105提出扫描镜与快速Ge∶Ga探测器相结合的方法,实现了二维图像的快速扫描,成像速度达到了4140 pixel/s。2018年,Qiu等106构建了一种基于快速旋转平移结构的扫描成像系统,使用具有快速检测性能的THz QWP作为探测器,进行了快速扫描反射成像,如图10(b)所示,单帧成像时间小于10 s,最大扫描速度为5000 pixel/s。采用阵列相机可以进一步提高成像速度,实现实时成像。2006年,Lee等107-108采用红外焦平面阵列演示了太赫兹实时成像,并通过提高激光器的输出功率、光束质量以及检测阵列的灵敏度,进一步实现了距离高达25 m的图案对峙成像,如图10(c)所示,成像分辨率为亚毫米级。2016年,Fu等109展示了一种基于上变频技术的无像素光电型太赫兹成像方式。利用由THz QWP和近红外发光二极管(LED)组成的QWP-LED器件,与商用Si-电荷耦合器件(CCD)相机一起成像,成像结果如图10(d)所示。光电流横向扩展引起的图像模糊效应可以忽略不计,所展示的无像素成像为实现高性能太赫兹成像设备提供了新思路。同年,Yang等110使用紧凑型太赫兹QCL器件和太赫兹阵列探测器,构建了一个光通孔径为50.8 mm、成像光斑直径超过40 mm的太赫兹实时成像系统,并将该成像装置应用于太赫兹危险物质分析仪,演示了爆炸物等危险物质的实时成像和定位。

在相干成像方面,2010年,Danylov等111采用气体激光作为本振参考信号,利用其与THz QCL发出的光的差频,实现了逆合成孔径雷达(ISAR)成像,如图11所示,横向和纵向的分辨率分别为0.4 mm和0.6 mm,动态范围达到105 dB。2013年,Ravaro等112提出了相干成像的另一个方案,利用近红外飞秒激光梳作为参考信号,一方面稳定THz QCL,另一方面对目标反射的THz场进行相干采样,获得了一枚10分欧元硬币的相位图像,结果表明数字字符相对于硬币平面具有不同深度。同年,Dean等113提出基于自混频效应的相干成像方案,以THz QCL腔内的激光模式作为参考信号,对目标反射光进行采样,获得了台阶表面形貌图,该方案没有额外的探测器和参考信号源,大大简化了成像系统。近期,Xie等114利用双光束自混频方案,使深度分辨率达到了微米量级;Qi等115也通过自混频方案对人类皮肤细胞进行了病理分析。

图 11. 基于太赫兹量子级联激光器的逆合成孔径雷达成像111。(a)ISAR成像装置示意图;(b)比例模型坦克照片;(c)比例模型坦克的THz图像,像素分辨率为0.4 mm×0.6 mm

Fig. 11. THz QCL-based ISAR imaging[111]. (a) Schematic of ISAR imaging device; (b) photograph of scale model tank; (c) THz image of scale model tank with pixel resolution of 0.4 mm×0.6 mm

下载图片 查看所有图片

4.3 太赫兹通信技术

THz波段是未来宽带通信的拓展方向,因此THz通信技术得到了很多国家和研究机构的重视。2009年,Grant等116首次将THz QWP应用于3.8 THz无线传输系统,演示了实时音频信号的传输,实现了基于1 THz以上辐射的无线信号传输的突破。2011年,Chen等117-118采用4.1 THz连续波QCL作为发射器,采用频谱匹配的THz QWP作为接收器,实现了实时音频信号的无线传输。在距离为2 m的传输过程中使用幅度调制,器件电路限制的调制带宽约为580 kHz;2013年,通过进一步优化THz QCL的驱动电路和THz QWP的信号处理电路,实现了距离为2.4 m、传输速率为2.5 Mbit/s的3.9 THz无线链路,演示了实时视频信号的无线传输38,如图12所示。对二进制伪随机信号的传输进行分析,结果表明,该链路的无差错传输速率为5 Mbit/s。

图 12. 基于太赫兹量子级联激光器和量子阱探测器的视频传输38。(a)信息传输装置示意图;(b)调制信号与传输后的信号;(c)视频传输结果

Fig. 12. Video transmission based on THz QCL and THz QWP[38]. (a) Schematic of information transmission device; (b) modulating signal and transmitted signal; (c) video transmission result

下载图片 查看所有图片

高速调制和解调是THz通信技术的关键环节。THz QCL和THz QWP的皮秒量级的载流子寿命,使得它们具有高速调制和解调的潜力。对于THz QCL而言,传统的电子调制方法在根本上受到了寄生阻抗的限制。2020年,Dunn等119报道了一种全新的声波调制方法,利用飞秒激光激发的声波脉冲扰动激光器的能带结构,从而实现了对激光辐射强度的高速调制,使调制时间降低至约800 ps,调制上升时间增加约800 ps,最大调制深度达到6%。对于THz QWP而言,2017年,Tan等120对调制THz光信号进行检测,最快响应频率为0.5 GHz。通过改进太赫兹QWP的封装,实现了对6.2 GHz调制光信号的直接检测39,器件的噪声等效功率(NEP)也达到了10-13 W·Hz-1/2。另外,Wang等121-122在2021年报道了利用THz QCL产生毫米波的新方法,为高频无线通信中的低噪声本地振荡器提供了可能的设计方案。

4.4 太赫兹光频梳技术

THz光频梳技术和超短脉冲生成可以应用于THz光谱、成像和通信领域。基于量子级联激光器的小型化太赫兹光频梳在2014年研制成功29,但其性能受到了色散的影响。最初的色散补偿采用啁啾波导结构,随后又尝试采用在激光器背面集成Gires-Tournois干涉仪和外腔调制等方法。2021年,di Gaspare等123以单层石墨烯光栅门控调制器作为无源色散补偿器,研制出具有98个等距光学模式的光频梳,将频梳光谱覆盖范围拓宽到太赫兹水平,达到1.2 THz。2019年,Lu等124报道了一种室温THz半导体光频梳的实现方法,该方法利用激光材料的非线性,使中红外激光与中红外光频梳在量子级联激光器中产生差频,并在2.2~3.3 THz区间产生5条间距为245 GHz的梳状线。

光频梳最重要的特征是光学模式之间有紧密的相位关系,对其进行研究需要精确的相位测量和调控方法。移波干涉傅里叶变换光谱(SWIFT)可用于测试光频梳梳齿之间的相位关系,但其实时性受到机械部件扫描速度的限制。Cappelli等125在2019年提出一项新技术,依靠多外差检测方案,能够实时跟踪光频梳发射模式的相位,并对光频梳的性能进行更准确的评估。同年,Consolino等126进一步实现了对光频梳模式间距和频率偏移的独立控制,使频梳的每个发射模式都表现出亚赫兹的相对频率稳定性和高度相干性。该技术为计量级用途奠定了基础。Li等127在2019年设计了基于多层石墨烯反射器的复合腔结构,如图13所示,利用石墨烯饱和吸收特性,生成了太赫兹脉冲,实现了被动锁模以及太赫兹量子级联激光器的无源梳齿模式运行。该结构采用由石墨烯和硅透镜形成的Gires-Tournois干涉反射镜,补偿了激光增益介质的色散,实现了16 ps的光脉冲操作。

图 13. 基于石墨烯反射器的锁模技术127。(a)石墨烯耦合THz QCL示意图;(b)探测信号强度随延迟时间的变化

Fig. 13. Mode locking technology based on graphene reflector[127]. (a) Schematic of graphene-coupled THz QCL; (b) probe signal intensity versus delay time

下载图片 查看所有图片

5 展望和总结

THz QCL和THz QWP对THz领域的影响巨大,但其大规模应用还有待实现。目前,提高器件温度特性是其面临的主要挑战之一,其原因是THz光子能量(10 meV)小,热激发的载流子可以获得足够的动能实现子带间的跃迁,这对于THz QCL来说,其粒子数反转变得困难,而对于THz QWP来说,则会出现暗电流的增加。另外,波长的进一步拓展也面临挑战,向低频段的拓展由于光子能量的进一步减小而愈加困难,而向高频段的拓展则受到剩余射线带的限制。新的有源区设计、低损耗波导材料、超表面结构和新型光子晶体的探索将为提高器件性能开辟新的途径。宽禁带半导体、GeSi、量子点等材料也可能成为高温器件选择128。高功率低噪声的光频梳和光频梳超短脉冲技术依然受到关注。研究梳齿间的相位关系及产生脉冲的新机制与新方法有助于解决高性能光频梳难以制备的难题,比如基于子带间极化激元的饱和吸收器以及谐波梳等。具有拓扑结构的THz QCL开创了新的方向129,利用拓扑光子技术可实现光的单向传播、对缺陷的免疫以及高维度的光场调控,实现传统光电子器件难以实现的性能130-131。如拓扑保护有助于研制稳健的激光器阵列和点发射激光源;利用拓扑结构的手征性进行波前调控,可实现对远场光斑和偏振状态的控制132,如涡旋光等;还可构建非厄米系统,用于新型拓扑光电子器件的研制和拓扑物理的研究。

国内的THz QCL和THz QWP的研究基本与国外同步,在器件性能和系统应用研究的很多方面都处于国际先进水平,如THz QCL的输出功率达到了瓦级,频率连续电调谐范围达到了80 GHz等。目前高性能器件的有源区设计多源自国外,自主设计的器件还有待进一步改进。特别是对于THz QCL来说,有源区结构是决定器件性能的重要因素,每次工作温度的提升基本都是采用了改进的有源区设计,但也不可否认除了有源区设计外,材料生长与器件工艺等也同样重要。

THz QCL和THz QWP的发展及其商用化的需求将进一步带动相关领域的研究,特别是高分辨光谱、高光谱成像以及太赫兹通信等。与近场显微镜相结合,还可将THz检测缩小至纳米尺度,并用于材料科学和生物医药等领域的基础研究中。

参考文献

[1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

[2] Dhillon S S, Vitiello M S, Linfield E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2017, 50(4): 043001.

[3] Koch M, Mittleman D M, Ornik J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3: 49.

[4] Leitenstorfer A, Moskalenko A S, Kampfrath T, et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2023, 56(22): 223001.

[5] Helal S, Sarieddeen H, Dahrouj H, et al. Signal processing and machine learning techniques for terahertz sensing: an overview[J]. IEEE Signal Processing Magazine, 2022, 39(5): 42-62.

[6] Lewis R A. A review of terahertz detectors[J]. Journal of Physics D: Applied Physics, 2019, 52(43): 433001.

[7] Dean P, Valavanis A, Keeley J, et al. Terahertz imaging using quantum cascade lasers—a review of systems and applications[J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374008.

[8] Hübers H W, Richter H, Wienold M. High resolution terahertz spectroscopy with quantum cascade lasers[J]. Journal of Applied Physics, 2019, 125(15): 151401.

[9] Wang C X, You X H, Gao X Q, et al. On the road to 6G: visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905-974.

[10] Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159.

[11] Walther C, Fischer M, Scalari G, et al. Quantum cascade lasers operating from 1.2 THz to 1.6 THz[J]. Applied Physics Letters, 2007, 91(13): 131122.

[12] LiL H, KunduI, DeanP, et al. High-power GaAs/AlGaAs quantum cascade lasers with emission in the frequency range 4.7‒5.6 THz[C]∥2016 International Quantum Cascade Lasers School and Workshop (IQCLSW), September 4‒9, 2016, Cambridge, UK. [S.l.: s.n.], 2016.

[13] Li L H, Chen L, Freeman J R, et al. Multi-Watt high-power THz frequency quantum cascade lasers[J]. Electronics Letters, 2017, 53(12): 799-800.

[14] Curwen C A, Reno J L, Williams B S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL[J]. Nature Photonics, 2019, 13(12): 855-859.

[15] Jaidl M, Beiser M, Giparakis M, et al. Ultrabroadband heterogeneous THz quantum cascade laser[J]. ACS Photonics, 2023, 10(1): 111-115.

[16] Khalatpour A, Tam M C, Addamane S J, et al. Enhanced operating temperature in terahertz quantum cascade lasers based on direct phonon depopulation[J]. Applied Physics Letters, 2023, 122(16): 161101.

[17] Biasco S, Garrasi K, Castellano F, et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers[J]. Nature Communications, 2018, 9: 1122.

[18] Betz A L, Boreiko R T, Williams B S, et al. Frequency and phase-lock control of a 3 THz quantum cascade laser[J]. Optics Letters, 2005, 30(14): 1837-1839.

[19] Danylov A A, Goyette T M, Waldman J, et al. Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level[J]. Optics Express, 2009, 17(9): 7525-7532.

[20] Rabanus D, Graf U U, Philipp M, et al. Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver[J]. Optics Express, 2009, 17(3): 1159-1168.

[21] Richter H, Pavlov S G, Semenov A D, et al. Submegahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line[J]. Applied Physics Letters, 2010, 96(7): 071112.

[22] Barbieri S, Gellie P, Santarelli G, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser[J]. Nature Photonics, 2010, 4(9): 636-640.

[23] Freeman J R, Ponnampalam L, Shams H, et al. Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb[J]. Optica, 2017, 4(9): 1059-1064.

[24] Vitiello M S, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser[J]. Nature Photonics, 2012, 6(8): 525-528.

[25] Bartalini S, Consolino L, Cancio P, et al. Frequency-comb-assisted terahertz quantum cascade laser spectroscopy[J]. Physical Review X, 2014, 4(2): 021006.

[26] Wang F H, Nong H, Fobbe T, et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser[J]. Laser & Photonics Reviews, 2017, 11(4): 1770042.

[27] Maineult W, Ding L, Gellie P, et al. Microwave modulation of terahertz quantum cascade lasers: a transmission-line approach[J]. Applied Physics Letters, 2010, 96(2): 021108.

[28] Micheletti P, Faist J, Olariu T, et al. Regenerative terahertz quantum detectors[J]. APL Photonics, 2021, 6(10): 106102.

[29] Burghoff D, Kao T Y, Han N R, et al. Terahertz laser frequency combs[J]. Nature Photonics, 2014, 8(6): 462-467.

[30] Vijayraghavan K, Jiang Y F, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers[J]. Nature Communications, 2013, 4: 2021.

[31] Riepl J, Raab J, Abajyan P, et al. Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser[J]. Light: Science & Applications, 2021, 10: 246.

[32] Raab J, Mezzapesa F P, Viti L, et al. Ultrafast terahertz saturable absorbers using tailored intersubband polaritons[J]. Nature Communications, 2020, 11: 4290.

[33] Consolino L, Nafa M, De Regis M, et al. Quantum cascade laser based hybrid dual comb spectrometer[J]. Communications Physics, 2020, 3: 69.

[34] Perraud J B, Guillet J P, Redon O, et al. Shape-from-focus for real-time terahertz 3D imaging[J]. Optics Letters, 2019, 44(3): 483-486.

[35] Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 2004, 84(20): 4068-4070.

[36] Tan Z Y, Wan W J, Cao J C. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors[J]. Chinese Physics B, 2020, 29(8): 084212.

[37] Jeannin M, Bonazzi T, Gacemi D, et al. High temperature metamaterial terahertz quantum detector[J]. Applied Physics Letters, 2020, 117(25): 251102.

[38] Chen Z, Gu L, Tan Z Y, et al. Real-time video signal transmission over a terahertz communication link[J]. Chinese Optics Letters, 2013, 11(11): 112001.

[39] Li H, Wan W J, Tan Z Y, et al. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors[J]. Scientific Reports, 2017, 7: 3452.

[40] Schneider H, Liu H C, Winnerl S, et al. Terahertz two-photon quantum well infrared photodetector[J]. Optics Express, 2009, 17(15): 12279-12284.

[41] Barbieri S, Alton J, Beere H E, et al. 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave[J]. Applied Physics Letters, 2004, 85(10): 1674-1676.

[42] Wienold M, Schrottke L, Giehler M, et al. Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions[J]. Electronics Letters, 2009, 45(20): 1030-1031.

[43] Han Y J, Li L H, Grier A, et al. Extraction-controlled terahertz frequency quantum cascade lasers with a diagonal LO-phonon extraction and injection stage[J]. Optics Express, 2016, 24(25): 28583-28593.

[44] Kumar S, Chan C W I, Hu Q, et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω /kB[J]. Nature Physics, 2011, 7(2): 166-171.

[45] Goodnick S M, Lugli P. Effect of electron-electron scattering on nonequilibrium transport in quantum-well systems[J]. Physical Review B, 1988, 37(5): 2578-2588.

[46] Bonno O, Thobel J L, Dessenne F. Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers[J]. Journal of Applied Physics, 2005, 97(4): 043702.

[47] Lü J T, Cao J C. Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2006, 88(6): 061119.

[48] Callebaut H, Kumar S, Williams B S, et al. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2004, 84(5): 645-647.

[49] Regnault N, Ferreira R, Bastard G. Broadening effects due to alloy scattering in a quantum cascade laser[J]. Physical Review B, 2007, 76(16): 165121.

[50] Li T, Joshi R P, Fazi C. Monte Carlo evaluations of degeneracy and interface roughness effects on electron transport in AlGaN-GaN heterostructures[J]. Journal of Applied Physics, 2000, 88(2): 829-837.

[51] Callebaut H, Kumar S, Williams B S, et al. Analysis of transport properties of tetrahertz quantum cascade lasers[J]. Applied Physics Letters, 2003, 83(2): 207-209.

[52] Indjin D, Harrison P, Kelsall R W, et al. Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2003, 82(9): 1347-1349.

[53] Callebaut H, Hu Q. Importance of coherence for electron transport in terahertz quantum cascade lasers[J]. Journal of Applied Physics, 2005, 98(10): 104505.

[54] Indjin D, Harrison P, Kelsall R W, et al. Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers[J]. Journal of Applied Physics, 2002, 91(11): 9019-9026.

[55] Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials[J]. Reviews of Modern Physics, 1983, 55(3): 645-705.

[56] Dupont E, Fathololoumi S, Liu H C. Simplified density-matrix model applied to three-well terahertz quantum cascade lasers[J]. Physical Review B, 2010, 81(20): 205311.

[57] Lee S C, Wacker A. Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures[J]. Physical Review B, 2002, 66(24): 245314.

[58] Williams B S, Kumar S, Callebaut H, et al. Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement[J]. Applied Physics Letters, 2003, 83(11): 2124-2126.

[59] Williams B S, Kumar S, Hu Q, et al. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode[J]. Optics Express, 2005, 13(9): 3331-3339.

[60] Belkin M A, Fan J A, Hormoz S, et al. Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K[J]. Optics Express, 2008, 16(5): 3242-3248.

[61] Han Y J, Li L H, Zhu J, et al. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers[J]. Optics Express, 2018, 26(4): 3814-3827.

[62] Chan C W I, Hu Q, Reno J L. Ground state terahertz quantum cascade lasers[J]. Applied Physics Letters, 2012, 101(15): 151108.

[63] Wade A, Fedorov G, Smirnov D, et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K[J]. Nature Photonics, 2009, 3(1): 41-45.

[64] Li W J, Ma Y, Xu Y F, et al. Continuous-wave single-mode quantum cascade laser at 5.1 THz based on graded sampled grating design[J]. Photonics Research, 2022, 10(12): 2686-2692.

[65] Turčinková D, Scalari G, Castellano F, et al. Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz[J]. Applied Physics Letters, 2011, 99(19): 191104.

[66] Rösch M, Beck M, Süess M J, et al. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation[J]. Nanophotonics, 2018, 7(1): 237-242.

[67] Rösch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser[J]. Nature Photonics, 2015, 9(1): 42-47.

[68] Li L H, Garrasi K, Kundu I, et al. Broadband heterogeneous terahertz frequency quantum cascade laser[J]. Electronics Letters, 2018, 54(21): 1229-1231.

[69] Qin Q, Reno J L, Hu Q. MEMS-based tunable terahertz wire-laser over 330 GHz[J]. Optics Letters, 2011, 36(5): 692-694.

[70] Castellano F, Bianchi V, Li L H, et al. Tuning a microcavity-coupled terahertz laser[J]. Applied Physics Letters, 2015, 107(26): 261108.

[71] Xu L Y, Curwen C A, Hon P W C, et al. Metasurface external cavity laser[J]. Applied Physics Letters, 2015, 107(22): 221105.

[72] Brandstetter M, Deutsch C, Krall M, et al. High power terahertz quantum cascade lasers with symmetric wafer bonded active regions[J]. Applied Physics Letters, 2013, 103(17): 171113.

[73] Tan Z Y, Wang H Y, Wan W J, et al. Dual-beam terahertz quantum cascade laser with >1 W effective output power[J]. Electronics Letters, 2020, 56(22): 1204-1206.

[74] Curwen C A, Reno J L, Williams B S. Terahertz quantum cascade VECSEL with watt-level output power[J]. Applied Physics Letters, 2018, 113(1): 011104.

[75] Jin Y, Reno J L, Kumar S. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode[J]. Optica, 2020, 7(6): 708-715.

[76] Bosco L, Franckié M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K[J]. Applied Physics Letters, 2019, 115(1): 010601.

[77] Khalatpour A, Paulsen A K, Deimert C, et al. High-power portable terahertz laser systems[J]. Nature Photonics, 2021, 15(1): 16-20.

[78] SchneiderH, LiuH C. Quantum well infrared photodetectors: physics and applications[M]. Berlin: Springer, 2006: 45-80.

[79] Gu L L, Zhang R, Tan Z Y, et al. Terahertz quantum well photo-detectors: grating versus 45° facet coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(16): 165101.

[80] Franke C, Walther M, Helm M, et al. Two-photon quantum well infrared photodetectors below 6 THz[J]. Infrared Physics & Technology, 2015, 70: 30-33.

[81] Wang H X, Zhang R, Wang F, et al. Two-colour THz quantum well photodetectors[J]. Electronics Letters, 2017, 53(16): 1129-1130.

[82] Wang H X, Fu Z L, Shao D X, et al. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well[J]. Applied Physics Letters, 2018, 113(17): 171107.

[83] Guo X G, Cao J C, Zhang R, et al. Recent progress in terahertz quantum-well photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500508.

[84] Zhang R, Fu Z L, Gu L L, et al. Terahertz quantum well photodetectors with reflection-grating couplers[J]. Applied Physics Letters, 2014, 105(23): 231123.

[85] Zhang R, Shao D X, Fu Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 3800407.

[86] Palaferri D, Todorov Y, Chen Y N, et al. Patch antenna terahertz photodetectors[J]. Applied Physics Letters, 2015, 106(16): 161102.

[87] Guo X G, Tan Z Y, Cao J C, et al. Many-body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94(20): 201101.

[88] Jia J Y, Wang T M, Zhang Y H, et al. High-temperature photon-noise-limited performance terahertz quantum-well photodetectors[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 715-724.

[89] Hübers H W, Pavlov S G, Richter H, et al. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser[J]. Applied Physics Letters, 2006, 89(6): 061115.

[90] Consolino L, Bartalini S, Beere H E, et al. THz QCL-based cryogen-free spectrometer for in situ trace gas sensing[J]. Sensors, 2013, 13(3): 3331-3340.

[91] Eichholz R, Richter H, Wienold M, et al. Frequency modulation spectroscopy with a THz quantum-cascade laser[J]. Optics Express, 2013, 21(26): 32199-32206.

[92] Hagelschuer T, Wienold M, Richter H, et al. Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser[J]. Applied Physics Letters, 2016, 109(19): 191101.

[93] Han Y J, Partington J, Chhantyal-Pun R, et al. Gas spectroscopy through multimode self-mixing in a double-metal terahertz quantum cascade laser[J]. Optics Letters, 2018, 43(24): 5933-5936.

[94] Ren Y, Hovenier J N, Higgins R, et al. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz[J]. Applied Physics Letters, 2011, 98(23): 231109.

[95] Richter H, Wienold M, Schrottke L, et al. 4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(4): 539-545.

[96] Sampaolo A, Patimisco P, Giglio M, et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2016, 16(4): 439.

[97] Hayton D J, Khudchenko A, Pavelyev D G, et al. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer[J]. Applied Physics Letters, 2013, 103(5): 051115.

[98] Bulcha B T, Hesler J L, Drakinskiy V, et al. Design and characterization of 1.8‒3.2 THz Schottky-based harmonic mixers[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(5): 737-746.

[99] Ren Y, Hovenier J N, Cui M, et al. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell[J]. Applied Physics Letters, 2012, 100(4): 041111.

[100] Darmo J, Tamosiunas V, Fasching G, et al. Imaging with a terahertz quantum cascade laser[J]. Optics Express, 2004, 12(9): 1879-1884.

[101] Tan Z Y, Gu L, Xu T H, et al. Real-time reflection imaging with terahertz camera and quantum-cascade laser[J]. Chinese Optics Letters, 2014, 12(7): 070401.

[102] de Cumis U S, Xu J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[J]. Optics Express, 2012, 20(20): 21924-21931.

[103] Oda N, Ishi T, Morimoto T, et al. Real-time transmission-type terahertz microscope with palm size terahertz camera and compact quantum cascade laser[J]. Proceedings of SPIE, 2012, 8496: 84960Q.

[104] Degl'Innocenti R, Wallis R, Wei B B, et al. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser[J]. ACS Photonics, 2017, 4(9): 2150-2157.

[105] Rothbart N, Richter H, Wienold M, et al. Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 617-624.

[106] Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector[J]. Optics Communications, 2018, 427: 170-174.

[107] Lee A W M, Williams B S, Kumar S, et al. Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array[J]. IEEE Photonics Technology Letters, 2006, 18(13): 1415-1417.

[108] Lee A W M, Qin Q, Kumar S, et al. Real-time terahertz imaging over a standoff distance (>25 meters)[J]. Applied Physics Letters, 2006, 89(14): 141125.

[109] Fu Z L, Gu L L, Guo X G, et al. Frequency up-conversion photon-type terahertz imager[J]. Scientific Reports, 2016, 6: 25383.

[110] 杨旻蔚, 季海兵, 谭智勇, 等. 成像与成谱联动的太赫兹分析检测仪[J]. 光学学报, 2016, 36(6): 0611004.

    Yang M W, Ji H B, Tan Z Y, et al. Terahertz joint analyzer with imaging and spetrum detection[J]. Acta Optica Sinica, 2016, 36(6): 0611004.

[111] Danylov A A, Goyette T M, Waldman J, et al. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264-16272.

[112] Ravaro M, Jagtap V, Santarelli G, et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling[J]. Applied Physics Letters, 2013, 102(9): 091107.

[113] Dean P, Valavanis A, Keeley J, et al. Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser[J]. Applied Physics Letters, 2013, 103(18): 181112.

[114] Xie Y, Wang Y X, Li L H, et al. Realization of high depth resolution using two-beam self-mixing interferometry with a terahertz quantum cascade laser[J]. Optics Communications, 2023, 545: 129737.

[115] Qi X Q, Bertling K, Stark M S, et al. Terahertz imaging of human skin pathologies using laser feedback interferometry with quantum cascade lasers[J]. Biomedical Optics Express, 2023, 14(4): 1393-1410.

[116] Grant P D, Laframboise S R, Dudek R, et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009, 45(18): 952-954.

[117] Chen Z, Tan Z Y, Han Y J, et al. Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2011, 47(17): 1002-1004.

[118] Barbieri S, Maineult W, Dhillon S S, et al. 13 GHz direct modulation of terahertz quantum cascade lasers[J]. Applied Physics Letters, 2007, 91(14): 143510.

[119] Dunn A, Poyser C, Dean P, et al. High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses[J]. Nature Communications, 2020, 11: 835.

[120] Tan Z Y, Li H, Wan W J, et al. Direct detection of a fast modulated terahertz light with a spectrally matched quantum-well photodetector[J]. Electronics Letters, 2017, 53(2): 91-93.

[121] Wang F H, Pistore V, Riesch M, et al. Ultrafast response of harmonic modelocked THz lasers[J]. Light: Science & Applications, 2020, 9: 51.

[122] Pistore V, Nong H, Vigneron P B, et al. Millimeter wave photonics with terahertz semiconductor lasers[J]. Nature Communications, 2021, 12: 1427.

[123] di Gaspare A, Pogna E A A, Salemi L, et al. Tunable, grating-gated, graphene-on-polyimide terahertz modulators[J]. Advanced Functional Materials, 2021, 31(10): 2008039.

[124] Lu Q Y, Wang F H, Wu D H, et al. Room temperature terahertz semiconductor frequency comb[J]. Nature Communications, 2019, 10: 2403.

[125] Cappelli F, Consolino L, Campo G, et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs[J]. Nature Photonics, 2019, 13(8): 562-568.

[126] Consolino L, Nafa M, Cappelli F, et al. Fully phase-stabilized quantum cascade laser frequency comb[J]. Nature Communications, 2019, 10: 2938.

[127] Li H, Yan M, Wan W J, et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation[J]. Advanced Science, 2019, 6(20): 1970120.

[128] Meng B, Hinkov B, Biavan N M L, et al. Terahertz intersubband electroluminescence from nonpolar m-plane ZnO quantum cascade structures[J]. ACS Photonics, 2021, 8(1): 343-349.

[129] Zeng Y Q, Chattopadhyay U, Zhu B F, et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 2020, 578(7794): 246-250.

[130] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 2017, 11(12): 752-762.

[131] Harari G, Bandres M A, Lumer Y. Topological insulator laser: theory[J]. Science, 2018, 359(6381): eaar4003.

[132] Han S, Chua Y, Zeng Y Q, et al. Photonic Majorana quantum cascade laser with polarization-winding emission[J]. Nature Communications, 2023, 14: 707.

曹俊诚, 韩英军. 太赫兹量子级联激光器与量子阱探测器研究进展(特邀)[J]. 中国激光, 2024, 51(1): 0114001. Juncheng Cao, Yingjun Han. Recent Progress in Terahertz Quantum Cascade Lasers and Quantum Well Detectors (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0114001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!