太赫兹科学与电子信息学报, 2023, 21 (11): 1306, 网络出版: 2024-01-17  

基于信道特征高精度提取的空地信道密钥量化

Air-to-ground wireless channel key quantization based on high-precision extraction of channel characteristics
作者单位
中国工程物理研究院电子工程研究所, 四川绵阳 621999
摘要
针对无人机空地信道, 基于空间期望最大化算法(SAGE)对信道特征参数进行高精确度估计。在提取了多径时延、多径功率等空地信道小尺度衰落特征后, 利用均匀量化和非均匀量化方法, 对实测数据的主径功率、主径-多径功率差开展无线信道密钥量化。分别针对起飞和巡航场景分析了密钥的量化效率、随机性以及算法运行时间等指标, 并与基于大尺度特征的密钥量化结果进行比较。密钥量化效率结果表明: 基于非均匀量化优于均匀量化; 基于信道特征高精确度估计的量化方法优于传统基于大尺度特征的量化; 起飞场景下的量化优于巡航场景的量化。密钥随机性测试结果表明本次量化所获得的密钥都具有较好的随机性; 算法运行时间结果则表明不同量化方法的运行时间差异较小。因此基于高精确度提取的 2种量化方法复杂度较低。
Abstract
Aiming at the UAV air-ground channel, based on the Space-Alternating Generalized Expectation-maximization(SAGE), the channel characteristic parameters are estimated with high precision, and the small-scale fading characteristics of the air-ground channel such as multipath delay and multipath power are extracted. Then, using uniform quantization and non-uniform quantization methods, the wireless channel key quantization is carried out on the main path power and the main path-multipath power difference of the measured data. The quantification efficiency, randomness, and algorithm running time of the key are analyzed for takeoff and cruise scenarios respectively, and compared with the key quantification results based on large-scale features. The key quantization efficiency results show that the non-uniform guard quantization is superior to the uniform guard quantization; the quantization method based on high-precision estimation of channel characteristics is better than traditional quantization based on large-scale features; and the quantization in the take-off scenario is better than that in the cruise scenario. The results of the performance test show that the keys obtained in these quantizations have good randomness; the running time difference of different quantization methods is small, therefore, the two quantization methods based on high-precision extraction bear low complicity.
参考文献

[1] DIN F U,LABEAU F. Physical layer security through secure channel estimation[C]// 2018 IEEE the 87th Vehicular Technology Conference(VTC Spring). Porto,Portugal:IEEE, 2018:1-5. doi:10.1109/VTCSpring.2018.8417694.

[2] LIU Ruoheng, TRAPPE W. Securing wireless communications at the physical layer[M]. New York, NY: Springer, 2010. doi: 10.1007/978-1-4419-1385-2.

[3] 王晓敏 .基于无线信道物理层特性的密钥生成方法的研究 [D].杭州:浙江工业大学, 2019:66. (WANG Xiaomin. Research on key generation method based on physical layer characteristics of wireless channel[D]. Hangzhou,China:Zhejiang University of Technology, 2019:66.) doi:10.27463/d.cnki.gzgyu.2019.000135.

[4] 张永伟 .基于无线信道的物理层加密技术研究 [D].南京:南京邮电大学, 2020:68. (ZHANG Yongwei. Research on physical layer encryption technology based on wireless channel[D]. Nanjing,China:Nanjing University of Posts and Telecommunications, 2020:68.) doi:10.27251/d.cnki.gnjdc.2020.000306.

[5] 胡晓言,金梁,黄开枝,等 .基于信号传播特性的物理层密钥生成方案 [J].电子学报, 2019,47(2):483-488. (HU Xiaoyan,JIN Liang, HUANG Kaizhi, et al. Physical layer secret key generation scheme based on signal propagation characteristics[J]. Acta Electronica Sinica, 2019,47(2):483-488.) doi:10.3969/j.issn.0372-2112.2019.02.032.

[6] 李浩男 .基于接收信号强度的无线物理层密钥提取方法研究 [D].成都:西南交通大学, 2019:67. (LI Haonan. Research on wireless physical layer key generation based on received signal strength[D]. Chengdu, China: Southwest Jiaotong University, 2019:67.) doi:10.27414/d.cnki.gxnju.2019.000846.

[7] 杜文杰 .基于接收信号强度的无线网络自适应密钥提取方法 [J].中北大学学报(自然科学版), 2021,42(1):44-49,55. (DU Wenjie. An adaptive key extraction method for wireless networks based on received signal strength[J]. Journal of North University of China(Natural Science Edition), 2021,42(1):44-49,55.) doi:10.3969/j.issn.1673-3193.2021.01.008.

[8] 张新蜜,徐明 .基于无线多径信道参数的密钥生成方案 [J].计算机工程, 2018,44(2):177-181. (ZHANG Xinmi,XU Ming. Key generation scheme based on wireless multipath channel parameter[J]. Computer Engineering, 2018,44(2):177-181.) doi:10.3969/ j.issn.1000-3428.2018.02.031.

[9] 陈许星,何遵文,张焱,等 .一种基于信道特征参数的无线通信密钥生成方法 [J].太赫兹科学与电子信息学报, 2017,15(5): 834-840. (CHEN Xuxing, HE Zunwen, ZHANG Yan, et al. A key generation scheme for wireless communication based on channel characteristics[J]. Journal of Terahertz Science and Electronic Information Technology, 2017,15(5):834-840.) doi:10. 11805/TKYDA201705.0834.

[10] 李楠楠,韩瑜,高宁,等 .基于幅度和相位联合分区的无线物理层密钥生成方法 [J].电信科学, 2021,37(5):100-112. (LI Nannan, HAN Yu, GAO Ning, et al. Joint amplitude and phase partition based physical layer key generation method[J]. Telecommunications Science, 2021,37(5):100-112.) doi:10.11959/j.issn.1000-0801.2021106.

[11] 张启星,付敬奇 .基于信道特征提取的物理层安全密钥生成方法 [J].电子测量与仪器学报, 2019,33(1):16-22. (ZHANG Qixing,FU Jingqi. Physical layer security key generation method based on channel feature extraction[J]. Journal of Electronic Measurement and Instrumentation, 2019,33(1):16-22.) doi:10.13382/j.jemi.B1801725.

[12] MATOLAK D W. Air-ground channels & models:comprehensive review and considerations for unmanned aircraft systems[C]// 2012 IEEE Aerospace Conference. Big Sky,MT,USA:IEEE, 2012:1-17. doi:10.1109/AERO.2012.6187152.

[13] FLEURY B H, TSCHUDIN M, HEDDERGOTT R, et al. Channel parameter estimation in mobile radio environments using the SAGE algorithm[J]. IEEE Journal on Selected Areas in Communications, 1999,17(3):434-450. doi:10.1109/49.753729.

[14] FESSLER J A,HERO A O. Space-alternating generalized expectation-maximization algorithm[J]. IEEE Transactions on Signal Processing, 1994,42(10):2664-2677. doi:10.1109/78.324732.

[15] OUYANG Luxia,YIN Xuefeng. An SAGE algorithm for channel estimation using signal eigenvectors for direction-scan sounding[C]// 2016 IEEE the 27th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications(PIMRC). Valencia, Spain:IEEE, 2016:1-6. doi:10.1109/PIMRC.2016.7794622.

[16] 宋晓青 .无线信道密钥生成方法研究 [D].西安:西安电子科技大学, 2017:92. (SONG Xiaoqing. Research on key generation method with wireless channel[D]. Xi'an,China:Xidian University, 2017:92.) doi:10.7666/d.D01386021.

[17] TIAN Li, YIN Xuefeng, LU S X. Automatic data segmentation based on statistical hypothesis testing for stochastic channel modeling[C]// The 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Instanbul:IEEE, 2010:741-745.) doi:10.1109/PIMRC.2010.5671917.

[18] EGHBALI H J. K-S test for detecting changes from landsat imagery data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):17-23. doi:10.1109/TSMC.1979.4310069.

[19] 徐沛帆 .随机性测试方法实现与应用 [D].成都:电子科技大学, 2019:110. (XU Peifan. Implementation and application of the methods of randomness test[D]. Chengdu,China:University of Electronic Science and Technology of China, 2019:110.)

[20] 王超,温涛,段冉阳 .NIST随机性检测方法研究 [J].信息技术与网络安全, 2018,37(11):5-8,15. (WANG Chao,WEN Tao,DUAN Ranyang. Research of NIST statistical test[J]. Information Technology and Network Security, 2018,37(11):5-8,15.) doi:10.19358/ j.issn.2096-5133.2018.11.002.

杨晨, 谢顺钦, 邱睿, 李湘鲁, 解楠. 基于信道特征高精度提取的空地信道密钥量化[J]. 太赫兹科学与电子信息学报, 2023, 21(11): 1306. YANG Chen, XIE Shunqin, QIURui, LIXianglu, XIE Nan. Air-to-ground wireless channel key quantization based on high-precision extraction of channel characteristics[J]. Journal of terahertz science and electronic information technology, 2023, 21(11): 1306.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!