硅酸盐学报, 2023, 51 (6): 1530, 网络出版: 2023-08-13  

NaNbO3-CaZrO3-Bi0.5Na0.5TiO3三元系陶瓷的相结构与储能性能

Structure and Energy Storage Characteristics of NaNbO3-CaZrO3-Bi0.5Na0.5TiO3 Ternary System Ceramics
作者单位
长安大学材料科学与工程学院,西安 710064
摘要
铌酸钠(NaNbO3)无铅陶瓷由于其无毒和出色的储能性能,在脉冲功率电容器领域吸引了越来越多的关注。然而,由于较大的有效储能密度(Wrec)和高的储能效率(η)不能同时实现,限制了其商业化。通过构建局域随机场,增加弛豫特性来提高储能性能的策略。采用传统固相法制备了(1-x)(0.96NaNbO3-0.04CaZrO3)-xBi0.5Na0.5TiO3 (x=0.05、0.10、0.15、0.20)反铁电储能陶瓷,研究了不同含量Bi0.5Na0.5TiO3对0.96NaNbO3-0.04CaZrO3 陶瓷的相结构、微观形貌、介电性能和储能特性的影响。结果表明:随着Bi0.5Na0.5TiO3含量的增加,(1-x)(0.96NaNbO3-0.04CaZrO3)-xBi0.5Na0.5TiO3固溶体由反铁电正交P相(x≤0.10)转变为反铁电正交R相(x≥0.15),同时介电峰向低温方向移动并变矮宽化,呈现出明显的弛豫特性。其中,0.85(0.96NaNbO3- 0.04CaZrO3)-0.15Bi0.5Na0.5TiO3陶瓷在室温260 kV/cm的场强下展示出最好的储能性能(储能密度Wrec=1.614 J/cm3,储能效率η=83.97%),且当温度在25~150 ℃变化时,表现出良好的温度的稳定性(Wrec变化幅度<15%),同时兼具良好的储能效率,是一种非常有前途的高温脉冲功率电容器材料。
Abstract
Sodium niobate(NaNbO3)-based lead-free ceramics have attracted much attention in the pulse power capacitors due to their non-toxicity and superior energy storage properties. However, the large recoverable energy-storage density (Wrec) and efficiency (η) cannot be achieved simultaneously, thus restricting their commercialization. This work proposed astrategy of increasing the relaxation characteristics to improve the energy storage performance via constructing a local random field. The (1-x)(0.96NaNbO3- 0.04CaZrO3)-xBi0.5Na0.5TiO3 (x=0.05, 0.10, 0.15, and 0.20) antiferroelectric energy storage ceramics were prepared by a conventional solid-state method. The effect of Bi0.5Na0.5TiO3 content on the phase structure, microstructure and dielectric, ferroelectric as well as energy storage properties of 0.96NaNbO3-0.04CaZrO3 ceramics was investigated. The results show that the microstructure of each ceramic is homogeneous and dense. The (1-x)(0.96NaNbO3-0.04CaZrO3)-xBi0.5Na0.5TiO3 solid solution transformsfrom antiferroelectric orthorhombic P phase (x≤0.10) to antiferroelectric orthorhombic R phase (x≥0.15), accompanied by abroadening dielectric peak moving towards the lower temperatures as Bi0.5Na0.5TiO3 content increases, thus having the representative relaxation characteristics. The 0.85(0.96NaNbO3-0.04CaZrO3)-0.15Bi0.5Na0.5TiO3 ceramic has a maximum energy storage density Wrec of 1.614 J/cm3 and a high energy storage efficiency η of 83.97% under 260 kV/cm at room temperature. Besides, the ceramic exhibits a good temperature stability at 25-150 ℃ (the variation of Wrec less than 15%) and a high energy storage efficiency, which can be used as a promising material for high-temperature pulsed power capacitors.
参考文献

[1] YAO Z , SONG Z, HAO H, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.

[2] LI Q, YAO F Z, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annu Rev Mater Res, 2018, 48: 219-243.

[3] LIU Z, LU T, YE J, et al. Antiferroelectrics for energy storage applications: A review[J]. Adv Mater Technol, 2018, 3(9): 1800111.

[4] LIU P, FAN B, YANG G, et al. High energy density at high temperature in PLZST antiferroelectric ceramics[J]. J Mater Chem C, 2019, 7(15): 4587-4594.

[5] ZUO Z, ZHAN Q , CHEN B, et al. Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes[J]. Chin Phys B, 2016, 25(8): 087702.

[6] GU J, SUN Q, CHEN X, et al. Energy storage performance of sandwich structured Pb(Zr0.4Ti0.6)O3/BaZr0.2Ti0.8O3/Pb(Zr0.4Ti0.6)O3 films[J]. Crystals, 2019, 9(11): 575.

[7] HAO X, ZHAI J, KONG L, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.

[8] SHROUT T R, ZHANG S. Lead-free piezoelectric ceramics: alternatives for PZT?[J]. J Electroceram, 2007, 19(1): 185.

[9] GUO J, YANG T. Giant energy storage density in Ba, La co-doped PbHfO3-based antiferroelectric ceramics by a rolling process[J]. J Alloys Compd, 2021, 888: 161539.

[10] LIU Y, LIU S, YANG T, et al. Achieving high energy storage density of PLZS antiferroelectric within a wide range of components[J]. J Mater Sci, 2021, 56(10): 6073-6082.

[11] JAFFE B, ROTH R S, MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. J Appl Phys, 1954, 25(6): 809-810.

[12] HAERTLING G H, LAND C E. Recent improvements in the optical and electrooptic properties of PLZT ceramics[J]. IEEE Trans Sonics Ultrason, 1972, 19(2): 269-280.

[13] WANG B, LUO L, JIANG X, et al. Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics[J]. J Alloys Compd, 2014, 585: 14-18.

[14] MALIK R A, HUSSAIN A, ZAMAN A, et al. Structure-property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 incipient piezoceramics[J]. RSC Adv, 2015, 5(117): 96953-96964.

[15] LI L, FAN P, WANG M, et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications[J]. J Phys D: Appl Phys, 2021, 54(29): 293001.

[16] YAN F, BAI H, SHI Y, et al. Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage[J]. Chem Eng J, 2021, 425: 130669.

[17] SUN Y, ZHOU Y, LU Q, et al. High energy storage efficiency with fatigue resistance and thermal stability in lead-free Na0.5K0.5 NbO3/BiMnO3 solid-solution films[J]. Phys Status Solidi RRL, 2018, 12(2): 1700364.

[18] WANG D, WANG G, MURAKAMI S, et al. BiFeO3-BaTiO3: a new generation of lead-free electroceramics[J]. J Adv Dielect, 2018, 8(6): 1830004.

[19] HU Q, TIAN Y, ZHU Q, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction[J]. Nano Energy, 2020, 67: 104264.

[20] QIAO Z, LI T, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase[J]. J Alloys Compd, 2022, 898: 162934.

[21] LI Z, WANG C, WANG Z, et al. Core-shell structure and dielectric properties of Ba0.6Sr0.4TiO3@ Fe2O3 ceramics prepared by co-precipitation method[J]. Crystals, 2021, 11(6): 623.

[22] CHEN Q, SHEN Y, ZHANG S, et al. Polymer-based dielectrics with high energy storage density[J]. Annu Rev Mater Res, 2015, 45: 433-458.

[23] LIU Z, LU J MAO Y, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J Eur Ceram Soc, 2018, 38(15): 4939-4945.

[24] ZHOU M, LIANG R, ZHOU Z, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chem Eng, 2018, 6(10): 12755-12765.

[25] QU N, DU H, HAO X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. J Mater Chem C, 2019, 7(26): 7993-8002.

[26] CHEN J, YE D, WU X, et al. Large enhancement of discharge energy density of polymer nanocomposites filled with one-dimension core-shell structured NaNbO3@SiO2 nanowires[J]. Compos A Appl Sci Manuf, 2020, 133: 105832.

[27] LI S Y, SHI P, ZHU X P, et al. Enhanced energy storage properties in lead-free NaNbO3-Sr0.7Bi0.2TiO3-BaSnO3 ternary ceramic[J]. J Mater Sci, 2021, 56(20): 11922-11931.

[28] YU Y, GAO F, WEYLAND F, et al. Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics[J]. J Mater Chem A, 2019, 7(19): 11665-11672.

[29] DONG X, LI X, CHEN X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement[J]. J Materiomics, 2021, 7(3): 629-639.

[30] FULANOVI?倢 L, ZHANG M, FU Y, et al. NaNbO3-based antiferroelectric multilayer ceramic capacitors for energy storage applications[J]. J Eur Ceram Soc, 2021, 41(11): 5519-5525.

[31] XIE A, FU J, ZUO R, et al. NaNbO3-CaTiO3 lead-free relaxor antiferroelectric ceramics featuring giant energy density, high energy efficiency and power density[J]. Chem Eng J, 2022, 429: 132534.

[32] XIE A, QI H, ZUO R, et al. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts[J]. J Mater Chem C, 2019, 7(48): 15153-15161.

[33] WANG X, REN P, REN D, et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: the role of dopant on microstructure and breakdown strength[J]. Ceram Int, 2021, 47(3): 3699-3705.

[34] YE J, WANG G, ZHOU M, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. J Mater Chem C, 2019, 7(19): 5639-5645.

[35] QIAO X, ZHANG F, WU D, et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics[J]. Chem Eng J, 2020, 388: 124158.

[36] FAN P, ZHANG S, XU J, et al. Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics[J]. J Mater Chem C, 2020, 8(17): 5681-5691.

[37] APETZ R, VAN BRUGGEN M P B. Transparent alumina: a light-scattering model[J]. J Am Ceram Soc, 2003, 86(3): 480-486.

[38] WEI T, LIU K, FAN P, et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceram Int, 2021, 47(3): 3713-3719.

[39] TIAN A, ZUO R, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3lead-free ceramics through regulating the antiferroelectric phase structure[J]. J Mater Chem A, 2020, 8(17): 8352-8359.

[40] YE J, WANG G, CHEN X, et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J Materiomics, 2021, 7(2): 339-346.

[41] SHI R, PU Y, WANG W, et al. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability[J]. J Alloys Compd, 2020, 815: 152356.

[42] ZHOU M, LIANG R, ZHOU Z, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.

[43] WANG J, FAN H, WANG M, et al. Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 lead-free ceramics[J]. Ceram Int, 2021, 47(13): 17964-17970.

[44] DONG X, LI X, CHEN X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement[J]. J Materiomics, 2021, 7(3): 629-639.

[45] YE J, WANG G, CHEN X, et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J Materiomics, 2021, 7(2): 339-346.

[46] LI D, SHEN Z, LI Z, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors[J]. J Mater Chem C, 2020, 8(23): 7650-7657.

[47] QU N, DU H, HAO X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. J Mater Chem C, 2019, 7(26): 7993-8002.

王子瑄, 李卓, 张家勇, 张静, 牛艳辉. NaNbO3-CaZrO3-Bi0.5Na0.5TiO3三元系陶瓷的相结构与储能性能[J]. 硅酸盐学报, 2023, 51(6): 1530. WANG Zixuan, LI Zhuo, ZHANG Jiayong, ZHANG Jing, NIU Yanhui. Structure and Energy Storage Characteristics of NaNbO3-CaZrO3-Bi0.5Na0.5TiO3 Ternary System Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1530.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!