应用激光, 2023, 43 (1): 45, 网络出版: 2023-03-30  

激光增材修复TC4钛合金不同方向组织及性能研究

Microstructure and Mechanical Properties of Ti-6Al-4V Repair Fabricated by Laser Additive Manufacturing with Different Orientations
作者单位
沈阳工业大学机械工程学院,辽宁 沈阳 110870
摘要
对TC4钛合金激光增材修复试样进行不同方向的组织、显微硬度及室温拉伸性能分析。结果表明:激光增材修复区为典型的网篮组织,增材高度方向增材区为细密的网篮组织,倾斜方向增材区的网篮组织内包含部分等轴α相,扫描方向试样由于热量累积少,散热快,且靠近结合区,由大量细长α板条以及部分针状α′组成。增材区显微硬度以扫描方向试样为最大,约为345 HV,比增材高度方向和倾斜方向试样高出4.1%;扫描方向试样结合区的显微硬度最高,达到362 HV。不同方向试样室温拉伸性能存在各向异性,扫描方向试样抗拉强度高,塑性略低,增材高度方向和倾斜方向试样抗拉强度低,塑性略高。断口均表现出韧性断裂。
Abstract
The microstructure and mechanical properties of Ti-6Al-4V repaired by laser additive manufacturing were studied, and the effect of the build orientation on additive zone microstructure, microhardness, tensile properties and fracture morphologies of Ti-6Al-4V were investigated. Results show that a typical basketweave microstructure is featured in the additive zone, of which the fine basketweave microstructure is obtained in the additive height direction, and the basketweave microstructure including the equiaxed α phase is obtained in the tile direction. There are plenty of elongated α lath and a few acicular α′ in the scanning direction, due to the less heat accumulation, rapid heat dissipation, and its proximity to the junction zone. The microhardness is approximately 345 HV in the scanning direction, which is increased by 4.1% compared to that in the height and tilt direction for the additive zone. For the junction zone, the microhardness is the highest in the scanning direction, which can reach 362 HV. The room-temperature tensile properties show obvious anisotropy for different orientations. The highest tensile strength is exhibited in the scanning direction, while the plasticity is slightly reduced. On the contrary, the property with lower tensile strength and higher plasticity is exhibited in the height and tilt direction, and the fracture morphology is characterized by ductile fracture for different orientations.
参考文献

[1] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014,35(10):2690-2698.

[2] 王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J].中国激光, 2009,36(12):3204-3209.

[3] 贾玉梅. 激光增材制造在航空航天领域中的应用[J]. 新材料产业, 2019(7): 52-56.

[4] COOKE S AHMADL K, WILLERTH S, et al. Metal additive manufacturing: Technology, metallurgy and modelling[J]. Journal of Manufacturing Processes, 2020, 57: 978-1003.

[5] BAUFELD B. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211(6): 1146-1158.

[6] BRANDL E, BAUFELD B, LEYENS C, et al. Additive manufactured Ti-6Al-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications[J]. Physics Procedia, 2010, 5: 595-606.

[7] CARROLL B E, PALMER T A, BEESE A M, et al. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.

[8] 陈静, 张霜银, 薛蕾, 等. 激光快速成形Ti-6Al-4V合金力学性能[J]. 稀有金属材料与工程, 2007, 36(3): 475-479.

[9] 单奇博, 刘忱, 姚静, 等. 扫描策略对激光熔化沉积态TC4钛合金组织性能及残余应力的影响[J]. 激光与光电子学进展, 2021, 58(11): 1114002.

[10] KELLY S M, KAMPE S L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metallurgical and Materials Transactions A, 2004, 35(6): 1861-1867.

[11] 高士友, 张永忠, 石力开, 等. 激光快速成型TC4钛合金的力学性能[J]. 稀有金属, 2004, 28(1): 29-33.

[12] 郝云波, 母天翼, 钱明明, 等. 激光熔化沉积钛合金工艺及组织和性能研究[J]. 应用激光, 2021, 41(4): 805-813.

[13] ZHUANG Z, ZHAO Z, CHEN J, TAN H, et al. Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(7): 1792-1797.

[14] 何伟, 杜小平, 马红征, 等. TC4钛合金相变温度的测定与分析[J]. 理化检验(物理分册), 2014, 50(7): 461-464.

[15] 王亚辉, 黄亮, 刘翔, 等. 基于增材制造和锻造复合成形的TC4钛合金组织和性能研究[J]. 稀有金属, 2021, 45(8): 897-904.

[16] PAYDAS H, MERTENS A, CARRUS R, et al. Laser cladding as repair technology for Ti-6Al-4V alloy: Influence of building strategy on microstructure and hardness[J]. Materials & Design, 2015, 85: 497-510.

[17] REN Y M, LIN X, FU X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming[J]. Acta Materialia, 2017, 132: 82-95.

刘伟军, 于天赐, 卞宏友, 王慧儒, 邢飞, 张凯. 激光增材修复TC4钛合金不同方向组织及性能研究[J]. 应用激光, 2023, 43(1): 45. Liu Weijun, Yu Tianci, Bian Hongyou, Wang Huiru, Xing Fei, Zhang Kai. Microstructure and Mechanical Properties of Ti-6Al-4V Repair Fabricated by Laser Additive Manufacturing with Different Orientations[J]. APPLIED LASER, 2023, 43(1): 45.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!