激光技术, 2023, 47 (6): 778, 网络出版: 2023-12-05  

基于多普勒激光雷达的机场边界层高度研究

Research on airport boundary layer height based on Doppler LiDAR
吴俊杰 1,2,*王耀辉 1,2,3徐足音 1,2,3任佳莉 1,2,3张博义 4
作者单位
1 中国民用航空飞行学院 航空气象学院,德阳 618300
2 中国民用航空飞行学院 民机火灾科学与安全工程四川省重点实验室,德阳 618300
3 中国民用航空飞行学院 空中交通管理学院,德阳 618300
4 北京莱维塞尔科技有限公司,北京 101318
摘要
为了探究广汉机场上空边界层高度的变化特征,利用多普勒激光雷达的载噪比数据,采用梯度法、小波协方差法和标准方差法,对机场上空的边界层高度进行了反演,并与L波段探空和飞机探测数据进行了对比,利用飞机探测数据和探空仪数据对激光雷达反演的边界层高度进行了验证。结果表明,在对流边界层顶的识别上,3种方法都能较好地捕获边界层信息,且一致性较好,但在对残余层顶和稳定边界层顶的识别上,梯度法无论是准确性、连续性还是稳定性上都表现出了明显优势;反演得到的对流边界层和残余层高度维持在2000 m左右,稳定边界层高度在100 m~200 m之间; 受边界层内湍流的影响,物质边界层高度与热力边界层高度在某些时段会出现显著差异。该研究可为飞行训练提供预警信息,更好地保障飞行安全。
Abstract
In order to explore the height variation characteristics of the boundary layer over Guanghan Airport, the carrier noise ratio data of Doppler light detection and ranging (LiDAR) was used to invert the boundary layer height over the airport by gradient method, wavelet covariance method, and standard variance method. The calculated data through these methods was then compared with that of the L-band sounding and aircraft detection data. The results show that boundary layer information can be captured well by these methods, and good consistency in the recognition of convective boundary pause can be observed. However, the gradient method shows obvious advantages in accuracy, continuity and stability in the recognition of residual layer pause and stable boundary top layer. During the observation period, the height of the convective boundary layer and the residual layer is about 2000 m, and the height of the stable boundary layer is between 100 m~200 m. The boundary layer height of LiDAR inversion was verified by aircraft detection data and sonde data. Due to the turbulence in the boundary layer, the material boundary layer and the thermal boundary layer were significantly different at certain times. The study can provide early warning information for flight training and better ensure flight safety.
参考文献

[1] JANG X W, LI Y Q, WANG X, et al. Observation and analysis of winter boundary layer in the eastern and lower reaches of the Tibetan Plateau[J]. Plateau Meteorology, 2009, 28(4):754-762(in Chinese).

[2] STULL R B. An Introduction to boundary layer meteorology[M].2nd ed. Toronto, Canada: Kluwer Academic,1989:126.

[3] SANDIFORD K, COLIER C. A proposal for the measurement of boundary layer temperature gradient using Doppler lidar[J]. Atmospheric Science Letters, 2000, 1(2):256-267.

[4] ZHANG H Sh, ZHANG X Y, LI Q H, et al. Research progress on the determination and application of atmospheric boundary layer[J]. Acta Meteorologica Sinica, 2020, 78(3): 522-536(in Chinese).

[5] WANG N, CAO X, ZHANG L, et al. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation[J]. Atmospheric Measurement Techniques, 2012, 5(8): 1965-1972.

[6] ZHAO M, MIAO M Q, JIN H, et al. An objective method for estimating the height of the mixing layer[J]. Scientia Meteorologica Sinica, 1987(4):20-30(in Chinese).

[7] WU J J, FANG LIN W H, ZHANG Zh F. Research on Doppler LiDAR wind field inversion technology for airports[J]. Aeronautical Computing Technique, 2020, 50(6): 1-4(in Chinese).

[8] ZHAO M, MIAO M Q, WANG Y Ch. Boundary layer meteorology tutorial[M]. Beijing: Meteorological Press,1991: 366-367(in Chinese).

[9] XU G R, CUI Ch G, ZHOU Zh M, et al. Sounding data were used to estimate the height of the atmospheric boundary layer on the Qinghai-Tibet Plateau and its lower reaches[J].Torrential Rain and Disasters, 2014, 33(3):217-227(in Chinese).

[10] DAI Ch Y, GAO Zh Q, CHENG G. Analysis of atmospheric boundary layer height characteristics over the arctic ocean using the aircraft and GPS soundings[J]. Atmospheric and Oceanic Science Letters, 2011, 4(2):124-130.

[11] HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristics of a low-altitude wind shear at Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212(in Chinese).

[12] LIU S B, HE W Y, LIU H Y, et al. Ground-based microwave radiometer method for detecting the height of the atmospheric boundary layer[J]. Journal of Applied Meteorological Science, 2015, 26(5): 626-635(in Chinese).

[13] LIU B M, MA Y Y, GONG W, et al. Two-wavelength LiDAR inversion algorithm for determining planetary boundary layer height[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206:117-124.

[14] ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using LiDAR and other data [J]. Laser Technology, 2022,44(5):563-569(in Chinese).

[15] WANG Zh Zh, LI J, ZHONG Zh Q, et al. Lidar detects the summer atmospheric boundary layer in Beijing[J].Journal of Applied Optics, 2008,29(1): 96-100(in Chinese).

[16] LI H, MA Y Y, YANG Y. A method of inverting the height of the boundary layer by the wavelet transformation method based on lidar data[J]. Dry Weather, 2015, 33(1):78-88(in Chinese).

[17] MENUT L, FLAMANT C, PELON J. Urban boundary-layer height determination from lidar measurements over the paris area[J]. Applied Optics, 1999, 38(6): 945-954.

[18] BOERS R, ELORANTA E W, COULTER R L. Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate[J]. Journal of Climate and Applied Meteorology, 1984, 2(1):247-266.

[19] SHIN S K, YOUNG M N, LEE K H, et al. Retrieval of the single scattering albedo of Asian dust mixed with pollutants using lidar observations[J]. Advances in Atmospheric Sciences, 2014, 9(10):1417-1426.

[20] DANG R J, YANG Y, HU X M, et al. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data[J]. Remote Sensing, 2019, 11(13):1590.

[21] WANG D X, SONG X Q, FENG Ch Zh, et al. Coherent Doppler lidar observes the height of the ocean atmosphere boundary layer in the Bohai Yellow Sea[J].Acta Optica Sinica, 2015, 35(1): s101001 (in Chinese).

[22] XUE D Y, ZHAO Ch N. Fractional order PID controller design for fractional order systems[J]. Control Theory and Applications, 2007, 24(5):771-776(in Chinese).

[23] PIOTR O, DARIUSZ B, PIOTR D, et al. The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control[J]. Central European Journal of Physics, 2013, 11(6):750-759.

[24] FAN Q, ZHU K Y, ZHENG J F, et al. Analysis of detection performance of all-fiber coherent laser wind radar under different weather types[J].Chinese Journal of Lasers,2017,44(2):0210003(in Chinese).

[25] CHRISTOPHE B, JEAN-CLAUDE A, REGISDU V. On the similarity functions A and B as determined from the VOVES experiment[J]. Boundary Layer Meteorology, 1981, 21(4):495-507.

[26] CHE J H, ZHAO P, SHI X, et al. Progress in atmospheric boundary layer research[J]. Chinese Journal of Geo-physics, 2021, 64(3):735-751(in Chinese).

[27] YANG F Y, ZHANG N, ZHU L F, et al. Comparison of methods for determining mixed layer height based on lidar and microwave radiometer observations[J].Plateau Meteorology,2016,35(4):1102-1111(in Chinese).

吴俊杰, 王耀辉, 徐足音, 任佳莉, 张博义. 基于多普勒激光雷达的机场边界层高度研究[J]. 激光技术, 2023, 47(6): 778. WU Junjie, WANG Yaohui, XU Zuyin, REN Jiali, ZHANG Boyi. Research on airport boundary layer height based on Doppler LiDAR[J]. Laser Technology, 2023, 47(6): 778.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!