太赫兹科学与电子信息学报, 2023, 21 (6): 759, 网络出版: 2024-01-19  

太赫兹频段基于NR迭代法的复介电常数提取

Extraction of complex permittivity in terahertz band based on NR iterative method
作者单位
1 首都师范大学 物理系,北京 100048
2 北京理工大学 光电学院,北京 100081
3 北京芯宸科技有限公司,北京 100029
4 北京航天计量测试技术研究所,北京 100076
摘要
伴随着6G 通信的发展,雷达遥感、检测成像等多个领域向太赫兹频段拓展,获取材料在该频段的介电常数显得愈发重要。本文基于NR 迭代法提取了太赫兹频率下样品的复介电常数,分析了迭代法的初值选取对提取结果的影响。在325~500 GHz 频段(Y 频段)搭建了一套由矢量网络分析仪(VNA)、扩频模块和四抛物面镜组成的8f 准光系统,实现散射参数S 2 1 的自由空间测量。由电磁波传输模型推导出复介电常数与S 2 1 之间的关系式, 利用迭代法提取出了特氟龙(Teflon)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)和聚甲基丙烯酸甲酯(PMMA)样品的复介电常数谱,与其他文献报道的结果一致,验证了系统和方法的有效性。
Abstract
It is important to obtain the dielectric constant of materials in terahertz band for applications of 6G communication, radar remote sensing, detection and imaging. In this paper, the complex permittivity of samples is extracted based on the Newton Raphson(NR) iterative method, of which the influence of the initial value is analyzed. A set of 8f quasi optical system consisting of Vector Network Analyzer(VNA), spread spectrum module and four parabolic mirrors is built in 325~500 GHz(Yband) to realize the free space measurement of scattering parameter S 21. The relationship between complex permittivity and S 21 is derived from the electromagnetic wave transmission model. The complex permittivity spectra of Teflon, ABS and PMMA samples are extracted by iterative method. The results are consistent with other literatures, which verify the effectiveness of the proposed system and the method.
参考文献

[1] THEOFANOPOULOS P C, SAKR M, TRICHOPOULOS G C. Multistatic terahertz imaging using the Radon transform[J]. IEEE Transactions on Antennas and Propagation, 2019,67(4):2700-2709.

[2] FHAGER L O,HEUNISCH S,DAHLBERG H,et al. Pulsed millimeter wave radar for hand gesture sensing and classification[J]. IEEE Sensors Letters, 2019,12(3):1-4.

[3] SMITH K, CSECH C, SHAKER G, et al. Gesture recognition using mm-wave sensor for human-car interface[J]. IEEE Sensors Letters, 2018,2(2):1.

[4] YU Yingrui, HONG Wei, JIANG Zhihao, et al. E-band low-profile, wideband 45° linearly polarized slot-loaded patch and its array for millimeter-wave communications[J]. IEEE Transactions on Antennas and Propagation, 2018,66(8):4364-4369.

[5] BERGMAN D. The dielectric constant of a composite material—a problem in classical physics[J]. Physics Reports, 1978,43(9): 377-407.

[6] VOLKSEN W,MILLER R,DUBOIS G. Low dielectric constant materials[J]. Chemical Reviews, 2010,110(1):56-110.

[7] CHIU T. Dielectric constant measurement technique for a dielectric strip using a rectangular waveguide[J]. IEEE Transactions on Instrumentation and Measurement, 2003,52(5):1501-1508.

[8] JIANG G Q, WONG W H, RASKOVICH E Y, et al. Open-ended coaxial-line technique for the measurement of the microwave dielectric constant for low-loss solids and liquids[J]. Review of Scientific Instruments, 1993,64(6):1614-1621.

[9] LYU Peng, ZHANG Liangjing, LI Shiwei, et al. Measurement of dielectric properties of rare earth oxides by resonance cavity perturbation method[J]. Journal of Physics and Chemistry of Solids, 2021(160):110362.

[10] KAATZE Udo. Complex permittivity of water as a function of frequency and temperature[J]. Journal of Chemical & Engineering Data, 1989,34(4):371-374.

[11] TOSHIHIDE T,KATSUMI F,KAORI F,et al. Development of complex relative permittivity measurement system based on freespace in 220 GHz-330 GHz range[J]. IEEE Transactions on Terahertz Science and Technology, 2015,5(1):102-109.

[12] TURGUT O, MARTIN H, IHSAN U. Development of measurement and extraction technique of complex permittivity using transmission parameter S21 for millimeter wave frequencies[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2017(12): 381510-381520.

[13] WEIR W B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies[J]. Proceeding of the IEEE, 1974,62(1):33-36.

[14] PAULA A L D, REZENDE M C, BARROSO J J. Modified Nicolson-Ross-Weir(NRW) method to retrieve the constitutive parameters of low-loss materials[C]// 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011). Natal,Brazil:IEEE, 2011:488-492.

[15] ABBAS Z, POLLARD R D, KELSALL R W. Complex permittivity measurements at Ka-band using rectangular dielectric waveguide[J]. IEEE Transactions on Instrumentation and Measurement, 2001,50(5):1334-1342.

[16] BAUM Thomas, THOMPSON Lachlan, GHORBANI Kamran. Complex dielectric measurements of forest fire ash at X-band frequencies[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(5):859-863.

[17] HAJISAEID E, DERICIOGLU A, AKYURTLU A. All 3D printed freespace setup for microwave dielectric characterization of materials[J]. IEEE Transactions on Instrumentation and Measurement, 2018,67(8):1877-1886.

[18] ROCHA L S,JUNQUEIRA C C,GAMBIN E,et al. A free space measurement approach for dielectric material characterization[C]//2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference(IMOC). Riode Janeiro,Brazil:IEEE, 2013:4-7.

[19] OZTURK M,SEVIM U K,AKGOL O,et al. An electromagnetic non-destructive approach to determine dispersion and orientation of fiber reinforced concretes[J]. Measurement, 2019(138):356-367.

[20] DEFFENBAUGH P I,RUMPF R C,CHURCH K H. Broadband microwave frequency characterization of 3D printed materials[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2013,3(12):2147-2155.

[21] PRESS W H,FLANNERY B P,TEUKOLSKY S A,et al. Numerical recipes:the art of scientific computing[M]. Cambridge County, England,UK:Cambridge University Press, 1986.

[22] BAKER-JARVIS James,VANZURA Eric J,KISSICK William A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Transactions on Microwave Theory and Techniques, 1990,38(8):1096-1103.

[23] DESHPANDE Manohar, REDDY Jagadeswara, TIEMSIN Pacita. A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 1997,45(13):359-365.

[24] ELHAWIL A,ZHANG L,STIENS J,et al. A quasi-optical free-space method for dielectric constant characterization of polymer materials in mm-wave band[C]// Proceedings Symposium IEEE/LEOS Benelux Chapter. Brussels,Belgium:IEEE, 2007.

[25] SINGH Y K, CHAKRABARTY A. A novel technique to estimate complex permittivity of low-loss dielectric materials in Gigahertz frequency band[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011,18(1):168-175.

[26] ZHU Haotian, WU Ke. Complex permittivity measurement of dielectric substrate in sub-THz range[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(1):2-15.

[27] YANG C,WANG J, YANG C. Estimation methods to extract complex permittivity from transmission coefficient in the terahertz band[J]. Optical and Quantum Electronics, 2021,53(8):1-10.

[28] LAMB J W. Miscellaneous data on materials for millimetre and submillimetre optics[J]. International Journal of Infrared and Millimeter Waves, 1996,17(12):1997-2232.

[29] ZHANG Xiansheng, CHANG Tianying, CUI Hongliang, et al. A free-space measurement technique of terahertz dielectric properties[J]. Journal of Infrared,Millimeter and Terahertz Waves, 2017,38(3):356-365.

[30] CHANG Tianying, ZHANG Xiansheng, ZHANG Xiaoxuan, et al. Accurate determination of dielectric permittivity of polymers from 75 GHz to 1.6 THz using both S-parameters and transmission spectroscopy[J]. Applied Optics, 2017,56(12):3287-3292.

[31] YANG Chuang. A position-independent reflection-only method for complex permittivity and permeability determination with one sample[J]. Frequenz, 2020,74(3/4):163-167.

[32] ALIREZA Kazemipour,MARTIN Hudlicka,SEE-KHEE Yee,et al. Design and calibration of a compact quasi-optical system for material characterization in millimeter/submillimeter wave domain[J]. IEEE Transactions on Instrumentation and Measurement, 2015,64(6):1438-1445.

[33] KADABA Prasad. Simultaneous measurement of complex permittivity and permeability in the millimeter region by a frequencydomain technique[J]. IEEE Transactions on Instrumentation and Measurement, 1984,33(4):336-340.

[34] NICOLáS Reyes, FRANCISCO Casado, VALERIA Tapia, et al. Complex dielectric permittivity of engineering and 3D-printing polymers at Q-band[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2018,39(11):1140-1147.

[35] PENG H Y,YANG C S,WEI Y A,et al. Terahertz complex refractive index properties of acrylonitrile butadiene styrene with rice husk ash and its possible applications in 3D printing techniques[J]. Optical Materials Express, 2021,11(9):2777-2786.

贾锐, 许靖, 张振伟, 黄辉, 高小强, 刘林, 缪寅宵, 张存林, 赵跃进. 太赫兹频段基于NR迭代法的复介电常数提取[J]. 太赫兹科学与电子信息学报, 2023, 21(6): 759. JIA Rui, XU Jing, ZHANG Zhenwei, HUANG Hui, GAO Xiaoqiang, LIU Lin, MIAO Yinxiao, ZHANG Cunlin, ZHAO Yuejin. Extraction of complex permittivity in terahertz band based on NR iterative method[J]. Journal of terahertz science and electronic information technology, 2023, 21(6): 759.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!