中国激光, 2024, 51 (7): 0701019, 网络出版: 2024-03-29  

kHz、mJ量级的可调谐MgO∶PPLN中红外光参量振荡器

kHz, mJ Level Tunable MgO∶PPLN Mid‐Infrared Optical Parametric Oscillator
刘帅 1,2,3陈锴 1,2,3孙悦 1,2,3闫超 1,2,3乔鸿展 1,2,3常继英 1,2,3李吉宁 1,2,3王与烨 1,2,3钟凯 1,2,3徐德刚 1,2,3,*姚建铨 1,2,3
作者单位
1 天津大学精密仪器与光电子工程学院,天津 300072
2 天津大学光电信息技术教育部重点实验室,天津 300072
3 天津大学微光机电系统技术教育部重点实验室,天津 300072
摘要
3~5 μm中红外波段激光在大气中具有较高的透过率,因此被广泛应用于光电对抗等领域。报道了基于掺杂氧化镁的周期极化铌酸锂(MgO∶PPLN)晶体的kHz、mJ量级的中红外光学参量振荡器(OPO)。采用纳秒脉冲1064 nm激光泵浦基于多周期MgO∶PPLN晶体的OPO,OPO采用泵浦双通单谐振平凹腔结构。中红外激光的重复频率为1 kHz,4.08 μm处输出的最高单脉冲能量达到1.041 mJ。最高光-光转换效率为16.8%,斜效率为19.3%,中红外激光脉宽约为9.53 ns。在最高能量输出时,OPO运转30 min时输出功率的均方根(RMS)为0.24%。通过温度-极化周期结合的调谐方式,OPO在3.49~4.18 μm的较宽范围内都能够保持0.9 W以上平坦的高能量输出。在极化周期27.5~29.6 μm以及温度25~200 ℃的调节范围内,闲频光波长的调谐范围为3.49~4.48 μm。实现了重复频率为kHz量级、单脉冲能量为mJ量级的可调谐中红外输出,其在光电对抗领域具有应用价值。
Abstract
Objective

Nanosecond mid-infrared lasers with central wavelengths of 3?5 μm are used in various applications, such as environmental monitoring, LIDAR , and electro-optical countermeasures, owing to the high atmospheric transmission at this band. Thus, developing high-energy mid-infrared laser sources with high pulse repetition frequencies is crucial for practical applications because such lasers exhibit superior jamming effects and can effectively target an opponent’s anti-jamming mechanism. An optical parametric oscillator (OPO) is suitable for efficiently realizing a tunable, high-pulse-repetition-frequency laser owing to its compactness, wide tuning range, and high conversion efficiency. The output characteristics of an OPO are primarily determined by the optical properties of the constituent nonlinear crystals. Among the various nonlinear crystals used in OPOs, periodically poled magnesium-oxide-doped lithium niobate (MgO∶PPLN) has attracted considerable attention because of its large effective nonlinear coefficient, high damage threshold, and flexible phase matching ability. However, to date, a pulse energy of the order of hundred microjoules has been realized for PPLN-OPOs with high pulse-repetition frequencies. In this study, a kilohertz- and millijoule-level mid-infrared OPO based on an MgO∶PPLN crystal is developed. The OPO, which is pumped by a 1064-nm nanosecond pulsed laser based on multi-period MgO∶PPLN with a double-pass single-resonance structure and flat-concave cavity, delivers a high output energy of up to 1.041 mJ at 4.08 μm with a pulse repetition frequency of 1 kHz. Subsequently, the output energy of the high-pulse-repetition-frequency mid-infrared OPO based on a PPLN crystal is increased to mJ range, which is suitable for mid-infrared electro-optical countermeasure applications.

Methods

The output energy of a mid-infrared laser with a high pulse-repetition frequency is significantly increased. First, the OPO is pumped by a high-performance, high-pulse-repetition-frequency 1064-nm laser with a double-pass single-resonance structure, which improves the utilization of the pump light and reduces the pumping threshold. Second, we evaluate the output characteristics for different OPO cavity types and compare them with the theoretical calculation results to determine the optimal conversion efficiency under these pumping conditions. With the combined periodic and temperature modulations, the OPO maintains a flat and high output energy over a wide range of 3.49?4.48 μm, wherein the energy exceeds 0.9 mJ.

Results and Discussions

In the experiment, a pump power higher than 6.2 W easily damages the surface of the crystal, indicating that maximizing the pump power to 6.2 W will result in a high output energy. We determine the relationship between conversion efficiency and suprathreshold multiplicity. The maximum conversion efficiency is obtained when the suprathreshold multiplier reaches 6.6 (Fig.3). Further, the pumping threshold changes significantly with changes in the cavity type because a flat-concave cavity improves the mode matching of the three interacting waves in the OPO cavity, resulting in a low OPO threshold. However, as the radius of curvature (R) decreases, the input mirror affects the pump light dispersion, which in turn reduces the intracavity pump power density, resulting in a decrease in the conversion efficiency of the parametric process. Figure 4(b) shows that using a flat concave mirror with R=300 mm as the input mirror results in a low threshold of 0.9 W. In our case, the suprathreshold multiplier is the closest to the optimum value of 6.6, and thus, the highest output power is obtained for this cavity. Consequently, we maximize the use of pumping energy below the damage threshold, thereby further increasing the output energy.

Conclusions

We demonstrate tunable mid-infrared lasers based on MgO∶PPLN crystals with a pulse repetition frequency of the order of kilohertz and an output energy of the order of millijoules. At a pump power of 6.2 W, the single-pulse energy of the 4.08-μm mid-infrared laser is 1.041 mJ with a pulse repetition frequency of 1 kHz. The optical-to-optical conversion and slant efficiencies are 16.8% and 19.3%, respectively, and the mid-infrared laser pulse width is approximately 9.53 ns. The fluctuation in the average power measured within 30 min is 0.24% (root mean square, RMS). The final output is highly stable, and the observed small fluctuations are caused by the drifts in the central wavelength of the laser diode. Combined with periodic and temperature modulations, the OPO delivers a flat and high output energy signal over a wide range of 3.49?4.48 μm. The tunable range covers 3.49?4.48 μm within the polarization period range of 27.5?29.6 μm at 25?200 ℃.

1 引言

3~5 μm的中红外波段是重要的大气窗口,具有良好的大气穿透特性,适用于远距离传输,已经被广泛应用于大气遥感、环境监测、激光雷达和光电对抗等领域1-3。此外,中红外波段包含丰富的分子官能团的吸收峰,可用于生物医学领域的分子特异性识别4。3~5 μm波段的高重复频率激光源是3~5 μm光源发展的重要方向之一,在光电对抗领域,高重复频率激光器在短时间内能够发射多脉冲激光,这一特点提高了对探测器实施干扰的成功概率5。同时,纳秒量级的中红外激光的单脉冲能量越高,其致盲、致昡的效果越好。因此,研制3~5 μm可调谐的高重复频率、大能量的中红外激光器具有现实意义。

非线性光学频率变换技术是实现可调谐、高重复频率中红外输出的有效方式,差频产生(DFG)、光学参量放大器(OPA)、光学参量振荡器(OPO)等是非线性光学频率变换中实现中红外输出的最常见方式6-9。其中,OPO具有结构紧凑、调谐范围宽、转换效率高的优势,所以OPO已经被广泛用于宽调谐中红外激光产生10。OPO的输出特性在很大程度上由非线性晶体的光学特性决定,常用的中红外非线性晶体主要有磷锗锌(ZnGeP2)、硒镓银(AgGaSe2)、周期极化铌酸锂(PPLN)等10-12。PPLN是周期极化晶体,施加高压电场使定域内铁电畴的极性方向周期性翻转,从而引入非线性极化率的周期跃变,进而实现准相位匹配,增强所需要的非线性光学效应。PPLN晶体具有较大的非线性系数、灵活的相位匹配方式、无空间走离效应等优势,在掺杂MgO之后,MgO∶PPLN晶体的损伤阈值进一步增大,是目前最为常用的中红外非线性晶体之一10

基于PPLN晶体的高重复频率中红外激光器的研究开展较早。2007年,Tillman等13采用重复频率为1 kHz、脉宽为3 ns的1047 nm激光器泵浦MgO∶PPLN-OPO,得到了24 mW的3.226 μm闲频光输出,单脉冲能量为24 μJ。2010年,Wu等14设计了双通单谐振半外腔的MgO∶PPLN-OPO结构,有效缓解了非线性晶体的热效应,采用重复频率为52 kHz、平均功率为48.2 W的1064 nm泵浦源,在3.82 μm处得到了9.23 W的闲频光输出,单脉冲能量提升至177 μJ。2015年,李海速等15采用主振荡功率放大器(MOPA)结构的重复频率为10 kHz的大功率1064 nm激光器泵浦MgO∶PPLN-OPO,在3.81 μm处得到了5.4 W的闲频光输出,单脉冲能量为0.54 mJ。2019年,Xu等16设计了准连续激光器泵浦的基于MgO∶PPLN晶体的MOPA,实现了重复频率为2 kHz、平均功率为966 mW的3.73 μm闲频光激光输出,单脉冲能量为483 μJ。目前基于PPLN晶体的纳秒OPO同时实现高能量、高重复频率中红外激光输出还具有一定难度,现有基于PPLN晶体的kHz量级高重复频率中红外激光器输出的单脉冲能量多为百μJ量级,通过优化泵浦源以及优化OPO结构,能够进一步提升中红外输出能量。

本文采用实验室自制的脉冲能量为10 mJ、脉宽为12 ns、重复频率为1 kHz的高峰值功率的1064 nm激光器泵浦基于MgO∶PPLN的OPO,近MW量级峰值功率的输出泵浦光有利于提高OPO输出的转换效率。实验实现了单脉冲能量mJ量级的高能量、高功率中红外激光输出。采用泵浦双通单谐振的OPO结构提高泵浦利用率、降低阈值,并通过OPO腔型优化,最终实现了输出能量和转换效率的提升。当泵浦光功率为6.2 W时,在4.08 μm处得到了重复频率为1 kHz,单脉冲能量为1.041 mJ的闲频光输出。此时的光-光转换效率达到了16.8%,斜效率为19.3%。中红外激光的脉宽为9.53 ns,对应的峰值功率为109.2 kW,通过设计晶体极化周期实现了调谐范围覆盖3.49~4.48 μm的可调谐中红外输出。脉宽中红外激光水平方向的光束质量因子(Mx2)和垂直方向的光束质量因子(My2)分别为8.92和7.89。闲频光运行30 min时输出功率的均方根(RMS)为0.24%。

2 实验装置

实验采用自制的重复频率为1 kHz的纳秒量级1064 nm激光器作为泵浦源,泵浦基于MgO∶PPLN晶体的双通单谐振OPO结构,实验装置如图1所示。1064 nm泵浦源的最高输出单脉冲能量为10.5 mJ,脉宽约为12 ns,峰值功率输出达到0.875 MW,这对后续利用OPO实现高效率、高峰值功率中红外激光输出具有意义。1064 nm泵浦光由电光调Q Nd∶YAG激光器输出,利用隔离器避免回光对前端器件造成损坏。为避免动态热焦距对OPO模式匹配的影响,利用由半波片(HWP)与布儒斯特窗(BW)组成的能量调节装置控制泵浦OPO的泵浦光功率。选用焦距(f)为300 mm的凸透镜对发散的泵浦光进行聚焦,以提高OPO腔内的注入功率密度,经过透镜后注入到OPO的泵浦光光斑半径为0.75 mm。

图 1. 基于MgO∶PPLN的光参量振荡器装置示意图

Fig. 1. Schematic of OPO based on MgO∶PPLN

下载图片 查看所有图片

MgO∶PPLN晶体尺寸为24 mm×10 mm×2 mm,掺杂MgO的摩尔分数为5%,晶体两端均镀有增透膜(1064 nm、1300~1600 nm和3500~4500 nm增透),晶体具有5个极化周期(27.5、27.8、28.4、29.0、29.6 μm)。OPO谐振腔选用平凹腔型,腔长60 mm,前腔镜M1为平凹镜,曲率半径为300 mm,表面镀有1064 nm泵浦光增透、1300~1600 nm信号光以及3000~5000 nm闲频光增反的介质膜。后腔镜M2镀有1064 nm泵浦光增反、1300~1600 nm信号光增反以及3000~5000 nm闲频光增透的介质膜。为避免漏出的泵浦光以及少部分透过的信号光对输出功率测量造成干扰,采用镀有1064 nm介质膜(1300~1600 nm全反,3000~5000 nm透过)的滤光片进行滤光。

3 实验结果与讨论

3.1 OPO调谐特性

实验中采用极化周期调谐结合温度调谐的方式实现可调谐输出,晶体放置在温度调节范围为25~200 ℃、调节精度为±0.1 ℃的温控炉内,晶体的5个极化周期为27.5、27.8、28.4、29.0 、29.6 μm。利用三波耦合方程对极化周期-温度调谐波长范围进行理论模拟。在光学参量振荡过程中,三波需要满足能量守恒和动量守恒:

1λ p=1λ s+1λ in p(λ p,T)λ p-n s(λ s,T)λ s-n i(λ i,T)λ i-1Λ=0

式中:λ pλ sλ i分别是泵浦光、信号光和闲频光的波长;n pn sn i分别是泵浦光、信号光和闲频光的折射率;Λ是晶体的极化周期;T是温度。其中折射率可以由MgO∶PPLN晶体的e光折射率Sellmeier方程17-18求得:

ne2(λ,T)=a1+b1f+a2+b2fλ2-(a3+b3f)2+a4+b4fλ2-a5-a6λ2

式中:ne为e光折射率;λ为波长;a1~a6b1~b4为参数;f为温度的函数,表示为

f=(T-24.5)(T+570.82)

Sellmeier方程的各项参数如表1所示。利用光谱仪测量信号光的输出波长,归一化处理后的结果如图2(a)所示。信号光调谐范围为1395~1529 nm,信号光谱线宽度为1.0~2.5 nm,谱线宽度随着信号光波长的变长而展宽。这是因为信号光波长越长,越靠近简并点,获得的增益越高,高增益会引起谱线展宽。根据信号光波长,通过式(1)可以计算出闲频光调谐范围为3.49~4.48 μm。图2(b)显示了实验测量结果与理论计算结果的对比,实验结果与理论计算结果吻合较好。

表 1. Sellmeier方程的参数

Table 1. Parameter values in Sellmeier equation

ParameterValueParameterValue
a15.756a60.0132
a20.0983b12.86×10-6
a30.202b24.7×10-8
a4189.32b36.113×10-8
a512.52b41.516×10-4

查看所有表

图 2. OPO的调谐特性。(a)信号光光谱;(b)闲频光调谐波长范围

Fig. 2. Tuning characteristics of OPO. (a) Spectra of signal light; (b) tuning wavelength range of idler light

下载图片 查看所有图片

3.2 OPO输出特性

在实验过程中,采用功率计测量激光平均功率。当泵浦光功率增加到高于6.2 W时,晶体表面会发生损伤现象,因此实验中将最高泵浦光功率固定为6.2 W,并通过调节半波片控制注入OPO的泵浦光功率。当利用高斯脉冲泵浦时,将高斯光束光场横截面分成若干等光强的均匀平面波(高斯光束光斑半径为x),并利用积分表示,此时高斯光束的转换效率19

η=1-PtP-0lnPPte-xcos2Γ(x)dx

式中:η为转换效率;Pt为阈值泵浦功率;P为泵浦功率;Γ(x)为增益系数,sin2Γ(x)/Γ(x)2=Pt/Pe-x。定义泵浦功率与OPO阈值的比为N=P/Pt,转换效率与N的关系如图3所示。当N达到6.6时,转换效率达到最大值。实验对比了不同腔型的输出特性,如图4(a)所示,随着腔型的改变,泵浦阈值变化明显。原因如下:平凹腔能够改善互作用的三波在OPO腔内的模式匹配,从而使得OPO阈值降低,但随着曲率半径的减小,输入镜对泵浦光的发散效果严重,从而导致腔内泵浦功率密度降低,进而转换效率下降。如图4(b)所示,当采用曲率半径R=300 mm的平凹镜作为输入镜时,阈值最低为0.9 W,此时N最接近最佳值6.6,因此该腔型获得了最高的输出功率。

图 3. 转换效率与N的关系

Fig. 3. Conversion efficiency versus N

下载图片 查看所有图片

图 4. 闲频光的输出功率。(a)不同腔型的闲频光输出功率;(b) 4.08 μm闲频光的输出特性

Fig. 4. Output powers of idler light. (a) Output powers of idler light for different cavity types; (b) output characteristic of 4.08 μm idler light

下载图片 查看所有图片

在120 ℃温度、28.4 μm极化周期下,闲频光的中心波长为4.08 μm,此时在6.2 W的泵浦功率下得到了1.041 W的最高输出功率,单脉冲能量为1.041 mJ,光-光转换效率达到16.8%,斜效率为19.3%。实验采用响应时间为2 ns的中红外二极管探测器测量了闲频光输出的时域波形,采用示波器采集并显示,得到的结果如图5所示。图5(a)为闲频光时域序列,每个周期时间为1 ms,对应重复频率为1 kHz。OPO的泵浦强度需要达到阈值强度时,参量光才能够在腔内建立振荡,因此相比于泵浦光,闲频光脉宽呈现出压窄趋势。实验中测量得到的闲频光的脉宽为9.53 ns,计算得闲频光的输出峰值功率为109.2 kW。

图 5. 闲频光的时域特性。(a)闲频光的时域序列;(b)闲频光波形

Fig. 5. Time-domain characteristics of idler light. (a) Time-domain sequence of idler light; (b) pulse waveform of idler light

下载图片 查看所有图片

通过温度-极化周期结合的调谐方式,测量并绘制调谐输出曲线,如图6所示,可以看出,在3.49~4.18 μm的范围内输出较为平坦,在该范围内都能够实现0.9 W以上的输出功率。根据测量得到的脉宽结果估计,在3.49~4.18 μm范围内OPO均能够实现~100 kW的峰值功率输出。如图6所示,当波长超过4.2 μm时,功率下降明显,这与后腔镜膜层在4.2 μm以上波长处透过率下降以及氧化型晶体的多声子吸收有关20-21

图 6. 调谐输出功率

Fig. 6. Output powers at different wavelengths

下载图片 查看所有图片

实验中采用84/16刀口法分别测量了泵浦光、闲频光的光斑分布,如图7所示,计算出泵浦光水平方向的光束质量Mx2=2.19,垂直方向的光束质量My2=1.89。闲频光水平方向的光束质量Mx2=8.92,发散角为15.7 mrad,垂直方向的光束质量My2=7.89,发散角为14.4 mrad。在最高输出功率下测量泵浦光以及闲频光运行30 min的输出功率波动,测试结果如图8所示。泵浦光在6.2 W功率处的RMS为0.20%,4.08 μm闲频光输出在1.041 W功率处的RMS为0.24%。输出功率仅存在小范围波动,这是由于随着温度波动,准连续工作方式的LD的中心输出波长会发生漂移,从而激光晶体对808 nm泵浦光的吸收效率受到影响,进而1064 nm激光输出功率出现波动。

图 7. 光斑分布。(a)泵浦光光斑分布;(b)闲频光光斑分布

Fig. 7. Spot distributions. (a) Spot distribution of pump light; (b) spot distribution of idler light

下载图片 查看所有图片

图 8. 激光的输出功率波动

Fig. 8. Fluctuation of laser output power

下载图片 查看所有图片

4 结论

报道了一种基于MgO∶PPLN晶体的kHz、mJ量级的可调谐中红外光参量振荡器。OPO的泵浦源采用实验室自制的重复频率为1 kHz、脉宽为~10 ns的1064 nm高性能激光器。采用极化周期调谐和温度调谐方式实现了覆盖3.49~4.48 μm范围的可调谐中红外输出。采用泵浦双通单谐振的OPO结构提高泵浦光利用率,降低阈值,通过优化OPO腔型,采用曲率半径R=300 mm的平凹镜作为输入镜,实现了输出能量和转换效率的提升。当泵浦光功率为6.2 W时,在4.08 μm处得到了最高输出功率1.041 W,单脉冲能量为1.041 mJ,脉宽为9.53 ns,对应峰值功率为109.2 kW,光-光转换效率达到16.8%,根据结果估计在3.49~4.18 μm范围内都能够保持~100 kW的连续调谐、高峰值功率输出。闲频光输出的光束质量因子分别为Mx2=8.92,My2=7.89。保持最高功率输出状态,中红外激光器运行30 min的输出功率RMS为0.24%。报道的基于MgO∶PPLN的OPO实现了kHz、mJ量级的可调谐中红外输出,同时能够长时间稳定输出,具有应用于光电对抗等领域的潜力。

参考文献

[1] Das S. Broadly tunable multi-output coherent source based on optical parametric oscillator[J]. Optics & Laser Technology, 2015, 71: 63-67.

[2] Smit A, Annamalai L. Protecting aircraft with infrared countermeasures: optronics[J]. CSIR Science Scope, 2006, 1(3): 22-23.

[3] Willer U, Saraji M, Khorsandi A, et al. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and Lasers in Engineering, 2006, 44(7): 699-710.

[4] Miyazaki M, Fujii M. A structural study on the excimer state of an isolated benzene dimer using infrared spectroscopy in the skeletal vibration region[J]. Physical Chemistry Chemical Physics, 2017, 19(34): 22759-22776.

[5] 朱陈成, 聂劲松, 童忠诚. 高重频激光干扰模式的分析[J]. 红外与激光工程, 2009, 38(6): 1060-1063.

    Zhu C C, Nie J S, Tong Z C. Analysis on the mode of high repetition laser jamming[J]. Infrared and Laser Engineering, 2009, 38(6): 1060-1063.

[6] Zhang J W, Wang Q, Hao J J, et al. Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals[J]. Optics Express, 2020, 28(25): 37903-37909.

[7] Liu G Y, Mi S Y, Yang K, et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300  W-class Ho: YAG MOPA system[J]. Optics Letters, 2020, 46(1): 82-85.

[8] Kumar S C, Esteban-Martin A, Santana A, et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6‒7 μm based on CdSiP2[J]. Optics Letters, 2016, 41(14): 3355-3358.

[9] 王海龙, 杨慧琦, 苏静, 等. 基于单共振光学参量振荡器实现近红外到中红外激光输出的实验研究[J]. 中国激光, 2022, 49(18): 180115.

    Wang H L, Yang H Q, Su J, et al. Experimental study of near-infrared to mid-infrared laser output based on single resonant optical parametric oscillator[J]. Chinese Journal of Lasers, 2022, 49(18): 180115.

[10] 邢爽, 于永吉, 王宇恒, 等. 基于多周期MgO∶PPLN的内腔宽调谐连续中红外光参量振荡器[J]. 光子学报, 2018, 47(6): 0619002.

    Xing S, Yu Y J, Wang Y H, et al. Wide tunable continuous-wave mid infrared intro-cavity optical parametric oscillator based on multi-period MgO∶PPLN[J]. Acta Photonica Sinica, 2018, 47(6): 0619002.

[11] Chen Y, Liu G Y, Yao B Q, et al. Comparison of mid-infrared ZnGeP2 rectangle ring optical parametric oscillators of three types of resonant regimes[J]. Applied Optics, 2019, 58(15): 4163-4169.

[12] Boyko A A, Marchev G M, Petrov V, et al. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 µm to 18 µm[J]. Optics Express, 2015, 23(26): 33460-33465.

[13] Tillman K A, Reid D T. Monolithic optical parametric oscillator using chirped quasi-phase matching[J]. Optics Letters, 2007, 32(11): 1548-1550.

[14] Wu B, Kong J A, Shen Y H. High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm[J]. Optics Letters, 2010, 35(8): 1118-1120.

[15] 李海速, 刘在洲, 郑建奎, 等. 高功率中红外MgO∶PPLN光参量振荡器[J]. 光学与光电技术, 2015, 13(1): 64-67.

    Li H S, Liu Z Z, Zheng J K, et al. High power mid-infrared MgO∶PPLN optical parametric oscillator[J]. Optics & Optoelectronic Technology, 2015, 13(1): 64-67.

[16] Xu L W, Li Y Y, Ju Y L. 91.1 kW, 5.3 ns compact mid-infrared optical parametric amplification based on PPMgLN[J]. Results in Physics, 2019, 15: 102783.

[17] Gayer O, Sacks Z, Galun E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 2008, 91(2): 343-348.

[18] 王睿, 汪水兰, 蒋星晨, 等. MgO∶PPLN光参量振荡特性及参量优化[J]. 激光与光电子学进展, 2023, 60(13): 1316022.

    Wang R, Wang S L, Jiang X C, et al. MgO∶PPLN optical parametric oscillation characteristics and parameter optimization[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316022.

[19] Bjorkholm J E. Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1971, 7(3): 109-118.

[20] Niu S J, Aierken P, Ababaike M, et al. Widely tunable, high-energy, mid-infrared (2.2‒4.8 µm) laser based on a multi-grating MgO: PPLN optical parametric oscillator[J]. Infrared Physics & Technology, 2020, 104: 103121.

[21] 聂丹丹, 李渊骥, 冯晋霞, 等. 利用单共振光学参量振荡器产生宽调谐高功率连续单频红外激光[J]. 中国激光, 2018, 45(4): 0401016.

    Nie D D, Li Y J, Feng J X, et al. Broadly tunable and high power continuous-wave single-frequency infrared laser by a singly resonant optical parametric oscillator[J]. Chinese Journal of Lasers, 2018, 45(4): 0401016.

刘帅, 陈锴, 孙悦, 闫超, 乔鸿展, 常继英, 李吉宁, 王与烨, 钟凯, 徐德刚, 姚建铨. kHz、mJ量级的可调谐MgO∶PPLN中红外光参量振荡器[J]. 中国激光, 2024, 51(7): 0701019. Shuai Liu, Kai Chen, Yue Sun, Chao Yan, Hongzhan Qiao, Jiying Chang, Jining Li, Yuye Wang, Kai Zhong, Degang Xu, Jianquan Yao. kHz, mJ Level Tunable MgO∶PPLN Mid‐Infrared Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2024, 51(7): 0701019.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!