孙伟民 1,*陈旭东 1闫奇 1,2耿涛 1[ ... ]王鹏飞 1
作者单位
摘要
1 哈尔滨工程大学物理与光电工程学院, 纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工程大学烟台研究院, 山东 烟台 264006
3 青岛哈尔滨工程大学创新发展中心, 山东 青岛 266000
4 中国科学院云南天文台, 云南 昆明 650011
三维成谱成像技术是一种能够对观测视场中的所有展源目标进行实时光谱获取的技术, 它可以通过单次采样同时获得目标光谱域和二维空间域信息。 光纤积分视场单元(IFU)则是天文三维成谱成像技术的关键器件, 通过将接收的像面切分, 将像面信息细分到若干单元传递至光谱仪, 在此过程中二维的展源目标被重整为互不干扰的线性排列供光谱仪进行采样提取, 能有效提高天文观测的时间分辨率。 介绍一种具有242光纤单元的IFU, 该IFU目前应用于中科院云南天文台的光纤阵列太阳光学望远镜(型号FASOT-1B)系统。 为满足FASOT-1B的指标要求, 获得高传输效率、 高光谱分辨率和高时间分辨率观测效果, 该IFU采用微透镜阵列加光纤阵列的结构, 该微透镜为正六边形球面镜, 实现接近100%的空间填充率。 综合考虑光纤积分视场单元前置望远镜系统和后端光谱仪系统的设计参数, 优化设计了一对11×11的微透镜阵列, 相邻微透镜间距300 μm, 每个微透镜对应天区1.5″, 以焦比F/8.2将接收到的光汇入与其对应的光纤纤芯中。 系统分析光纤芯径与光谱仪光谱分辨率间的关系, 设计的光纤规格为: 35/105/125 μm, 该设计既能满足光纤接收微透镜所传递的全部光信息, 同样可以得到系统需求的光谱分辨率和相对短的狭缝宽度。 量化分析IFU阵列端光纤直径与微微孔深度对光纤实际入射焦比的影响, 选定的微孔尺寸直径130 μm, 深3 mm。 阵列端二维排布的光纤在赝狭缝端经过重整, 以线性排列将光信息导入光谱仪, 相邻光纤间距130 μm。 整个IFU的能量传输效率均值77.7%, 波动值RMS 1.6%; 所有光纤出射焦比EE90均慢于F/7。 IFU出射端(赝狭缝端)光纤横向(排列方向)偏移量RMS值小于2.7 μm, 纵向(垂直于排列方向)偏移量RMS值小于1.8 μm。 FASOT-1B系统安装IFU并调试后进行了验证性观测, 成功获取了太阳NOAA12738活动区MgI色球的斯托克斯光谱, 该IFU也成为国内首个自主研制并应用于科学观测的光纤加微透镜型IFU。
三维成谱成像 光纤阵列太阳光学望远镜 积分视场单元 太阳光谱 Three-dimensional spectral imaging Fiber array solar optical telescope IFU Solar spectrum 
光谱学与光谱分析
2023, 43(4): 1168
Author Affiliations
Abstract
1 Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao 266000, China
3 Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
We propose a high-sensitivity bidirectional torsion sensor using a helical seven-core fiber taper embedded in multimode fiber (MHSTM). Sensors with different taper waists and helical pitches are fabricated, and their transmission spectra are obtained and analyzed. The waist and length of the sandwiched seven-core fiber are finally determined to be 68 µm and 3 mm, respectively. The experimental results show that the clockwise and counterclockwise torsion sensitivities of the proposed sensor are 2.253 nm/(rad/m) and -1.123 nm/(rad/m), respectively. When tapered waist diameter reduces to 48 µm, a superior torsion sensitivity of 5.391 nm/(rad/m) in the range of 0–4.24 nm/(rad/m) is obtained, which is 46 times as large as the traditional helical seven-core fiber structure. In addition, the MHSTM structure is also relatively stable to temperature variations.
torsion sensor Mach–Zehnder interferometer multicore fiber helical taper structure 
Chinese Optics Letters
2023, 21(4): 041205

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!