郭威 1常浩 2徐灿 3周伟静 2[ ... ]姬刚 2
作者单位
摘要
1 航天工程大学研究生院, 北京 101416
2 航天工程大学宇航科学与技术系, 北京 101416
3 航天工程大学航天指挥学院, 北京 101416
太阳能电池作为一种高效的光电转化器, 被广泛地应用于光伏发电系统中。 激光作为一种高亮度光源辐照电池时, 会导致其出现损伤, 可利用电池的表面散射光谱特性, 对其损伤程度进行判别。 通过目标表面散射光谱测量系统, 对激光辐照后的三结砷化镓电池散射光谱进行测量, 并计算双向反射分布函数(BRDF)。 其中测量系统主要由FX 2000和NIR 17型光纤光谱仪组成, 针对电池表面的强镜反射特性, 在实验中采用了入射角和反射角为30°的测量几何模型。 原始三结砷化镓太阳能电池的结构主要包括减反射膜DAR层、 顶电池GaInP层、 中电池GaAs层和底电池Ge层, 其散射光谱特征包括可见光谱段(500~900 nm)的吸收特性及近红外谱段(900~1 200 nm)的类周期振荡特性, 在对连续激光辐照损伤后电池的光谱特性进行实验测量后, 得到了损伤电池光谱BRDF的变化, 并结合基于薄膜干涉理论的电池散射光谱模型, 对各膜层损伤后的特征进行了分析。 结果表明: DAR层的主要作用是降低光谱反射能量, 对光谱曲线的特性影响较小; Ge层对光谱曲线形状基本无影响; 电池散射光谱吸收和干涉等特征主要由GaInP层和GaAs层所引起, 其中, GaInP层主要影响可见光谱段的吸收特性, 并对近红外谱段内的干涉特性起到调制作用, 而GaAs层主要影响近红外谱段的干涉特性, 当其损伤到一定程度后, 会导致可见光谱段内出现干涉特性。 最后, 在实验结果分析的基础上, 通过模型研究了电池各层对散射光谱特性的影响, 并讨论了基于散射光谱特性的电池损伤程度判别, 研究结果可为电池激光损伤判别提供参考。
激光辐照 三结砷化镓电池 散射光谱 表面形貌 损伤特性 Laser irradiation Triple junction gallium arsenide battery Scattered spectrum Surface appearance Damage characteristics 
光谱学与光谱分析
2023, 43(12): 3674
作者单位
摘要
航天工程大学宇航科学与技术系, 激光推进及其应用国家重点实验室, 北京 101416
为研究脉冲激光斜入射烧蚀铝靶冲量耦合机理, 直接测量其宏观冲量耦合特性是其中一种手段, 但激光烧蚀包含多种物理过程, 仅仅研究其宏观力学性能难以深入分析冲量形成机理, 脉冲激光烧蚀形成的等离子体羽流喷射是诱发力学效应的重要过程, 因此, 在研究宏观力学性能的基础上, 通过开展脉冲激光斜入射烧蚀铝靶等离子体羽流及发射光谱特性测量研究, 深入分析脉冲激光烧蚀冲量耦合机理。 围绕单脉冲1064nm激光斜入射烧蚀铝靶开展研究, 首先通过构建高速摄影测量系统和发射光谱测量系统, 获得了典型激光能量密度斜入射烧蚀铝靶产生的等离子体羽流图像、 等离子体光谱图像和等离子体发射光谱, 基于等离子体发射光谱, 利用Boltzmann作图法和Stark展宽法, 分别研究了脉冲激光多种斜入射角度下等离子体温度、 电子数密度随能量密度的变化关系; 通过搭建扭摆微冲量测量系统, 研究了脉冲激光多种斜入射角度下, 沿着激光入射方向的冲量耦合系数随能量密度的变化。 研究中遵循从羽流微尺度演化过程到冲量宏观力学性能测量分析的研究思路。 实验结果表明, 随着能量密度的增加, 等离子体羽流发光强度增强, 羽流离化程度增加, 等离子体温度、 电子数密度均先迅速增加, 冲量耦合系数也迅速增加; 当能量密度大于15 J·cm-2时, 由于等离子体屏蔽效应, 等离子体温度、 电子数密度均逐渐趋于饱和, 最终导致冲量耦合系数随着能量密度的增加而减小; 此外, 随着入射角度的增加, 等离子体温度、 电子数密度均逐渐减小, 导致冲量耦合系数也随之减小。 研究结果表明, 利用高速摄影和发射光谱可较好地分析脉冲激光烧蚀冲量耦合机理, 研究结果可为激光空间碎片清除、 空间微推力器、 空间非合作目标消旋等空间应用的关键参数优化提供参考。
激光烧蚀 斜入射 等离子体羽流 高速摄影 发射光谱 等离子体屏蔽 冲量耦合 Laser ablation Oblique incidence Plasma plume Fast photography Optical emission spectroscopy Plasma shielding Impulse coupling 
光谱学与光谱分析
2023, 43(3): 933
作者单位
摘要
航天工程大学 宇航科学与技术系 激光推进及其应用国家重点实验室,北京 101416
激光微尺度烧蚀下的烧蚀质量是激光微推进系统中评估比冲等性能参数的重要物理量,文中在利用扫描电镜得到的烧蚀坑图像的基础上,基于灰度表面重构形貌方法,建立了微尺度烧蚀坑形貌三维模型重构算法;针对图像噪声影响,对图像进行分段平滑,有效地解决了量化误差和灰度模糊对重构形貌的影响,实现了烧蚀坑体积估算。结果表明:所提出的方法能够快速有效地重构激光微尺度烧蚀下烧蚀坑形貌的三维形状,进而计算其烧蚀质量。
激光微推进 激光微烧蚀 烧蚀质量 SEM图像 SFS方法 laser micro-propulsion laser micro-ablation ablation quality SEM image SFS method 
红外与激光工程
2021, 50(S2): 20210297
作者单位
摘要
航天工程大学 宇航科学与技术系 激光推进及其应用国家重点实验室,北京 101416
为研究不同金属材料的激光烧蚀推进性能,对常见的七种金属材料:Al,Fe,Ni,Cu,Y,Ag,Au,使用波长1 064 nm,脉宽8 ns的Nd:YAG激光器在大气下进行烧蚀,测量了烧蚀质量、冲量、冲量耦合系数、比冲和能量转化效率等推进性能参数,获得了激光功率密度对推进性能的影响规律。实验结果表明:相同激光功率密度下,Fe的烧蚀质量最大,Y的烧蚀质量最小;Al,Au,Cu的冲量较大,Ag的冲量最小;Au的冲量耦合系数和比冲均值在七种金属材料中最大,分别在激光功率密度为 $1.72 \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$${{2}}{{.98}} \times {10^{10}}\;{\rm{W}}/{\rm{c}}{{\rm{m}}^2}$时达到40.7 μN/W和500 s的最大值,平均能量转化效率可达6%。
空间推进 激光烧蚀 冲量耦合系数 比冲 space propulsion laser ablation impulse coupling coefficient specific impulse 
红外与激光工程
2021, 50(S2): 20210277
作者单位
摘要
航天工程大学 宇航科学与技术系 激光推进及其应用国家重点实验室,北京 101416
利用纳秒脉冲激光器对典型金属材料在毫米级烧蚀光斑尺寸下的冲量耦合特性进行了实验研究。基于典型扭摆测量系统测量激光烧蚀产生的冲量特性,采用局部最小二乘法平移拟合的方法,对扭摆振动产生的微小位移实验数据进行了预处理,避免了噪声对冲量测量的干扰。设计了一种毫米量级烧蚀光斑尺寸测量方法。在此基础上,实验获得了毫米量级光斑辐照金属靶材Al 5A06、TC4、30CrMnSiA的冲量,研究结果表明,在相同能量密度的情况下,钛合金TC4对应的冲量最大,TC4获得的最大冲量耦合系数大于Al 5A06和30CrMnSiA,其对应的最优能量密度却是三种材料中最小的。为了分析烧蚀羽流对冲量耦合特性的影响,估算了不同能量密度对应的羽流透射率,计算结果表明,当羽流透射率低于0.3时,大量的入射激光能量被羽流吸收,导致冲量耦合系数的下降。
激光烧蚀 毫米量级光斑 冲量耦合特性 羽流透射率 laser ablation mm scale spot size impulse coupling characteristics plume transmittance 
红外与激光工程
2021, 50(8): 20200390
作者单位
摘要
航天工程大学 宇航科学与技术系 激光推进及应用国家重点实验室,北京101416
基于建立的单结GaAs太阳能电池激光辐照热传导模型和光电转换物理模型,对单结GaAs太阳能电池的脉冲激光辐照温度及光电转化影响进行了仿真模拟研究,分别研究了532 nm和808 nm两种不同波长的脉冲激光在不同辐照能量及入射角度下,太阳能电池温度、伏安特性、光电转换效率等性能变化,仿真结果表明,入射激光与太阳能电池法向之间夹角越小,太阳能电池输出电功率越大,在相同的激光辐照强度下,532 nm和808 nm波长激光对GaAs电池辐照导致的温度影响差别不大,808 nm波长激光比532 nm波长激光对于GaAs材料来说具有更大的吸收系数,太阳能电池能够吸收更多的能量,从而具有更高的响应,808 nm波长激光辐照单结GaAs电池能够输出更大的电功率以及带来更大的光电转换效率。
激光辐照 光电转化 温度 伏安特性 laser irradiation photoelectric conversion temperature voltage-current characteristics 
红外与激光工程
2020, 49(S1): 20200262

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!