作者单位
摘要
安徽大学信息材料与智能感知安徽省实验室, 安徽 合肥 230601
密封药瓶内的药物在储存过程中, 时常会因为保存方式不当, 产品质量不合格等问题导致其气密闭性变差, 极易与空气中的各种气体发生化学反应引起药品变质, 影响其正常使用。 因此, 可以通过药瓶内部各种气体浓度的测量及时反映出药品的储存状态。 其中水汽(H2O)是空气中的常见气体且极易与药品产生反应, 药瓶中H2O浓度的测量是判断瓶内药物是否变质的重要依据之一。 实际检测药瓶内水汽浓度的传统方法或通常需要直接接触到样品才能做出判断, 很难做到无损检测, 样品处理过程较为繁琐, 耗时耗力, 难以实现对大量药瓶的实时无损测量, 所以需要一个实时快速非接触式检测容器密封性的方法。 为了高效检测并实时监控密封药品存储容器(药瓶)内的水汽浓度, 提出了一种可调谐半导体激光吸收光谱(TDLAS)的数字正交锁相解调算法, 并对该算法的可行性及有效性进行了实验验证。 药瓶采用长12 cm宽9 cm高64 cm的可透光聚乙烯(PE)材质; 中心波长为1 391 nm的分布式反馈(DFB)激光器作为光源, 搭建了基于数字正交锁相解调算法的TDLAS药品检漏测量系统, 以数字锁相解调代替了传统的锁相解调并且研究了不同的调制深度、 采样率对解调出的二次谐波信号(WMS-2f)幅值的影响。 在系统各项参数最优的情况下考察了不同光功率下WMS-2f信号稳定性, 并通过拟合结果推演出其他未知水汽浓度的WMS-2f信号。 研究结果表明: 与常规锁相放大器解调算法相比, 数字锁相解调可编译性强, 系统结构更为紧凑, 成本更为低廉。 Allan方差分析显示在160 s内的状态下, 水汽检出限为18 ppm, 验证了该方法的稳定性与可靠性。
数字锁相解调 水汽浓度检测 药瓶检漏 Digital phase-locked demodulation TDLAS TDLAS Water vapor concentration detection Medicine bottle leak detection 
光谱学与光谱分析
2023, 43(3): 698
作者单位
摘要
安徽大学物理与材料科学学院, 安徽 合肥 230601
土壤呼吸是地气间碳氮流通的主要途径。实时原位测量不同土壤生态环境下的气体排放,是研究大气温室气体形成、转移和消耗等动态过程的有力手段,可以为揭示碳氮生态系统循环与环境演化的主要过程及其驱动机制提供关键的科学依据。以室温连续量子级联激光器(RT-CW-QCL)作为激光光源,结合长程光学吸收池和直接吸收光谱探测技术,建立了一套高灵敏度、高精度的激光光谱系统,并以不同生态环境下的土壤样品为研究对象,开展了土壤和空气中CO、N2O气体交换过程的实时监测分析研究。实验结果表明:4种不同生态环境(芦苇丛、池塘、有机培土和草地)的土壤表现出不同的CO和N2O释放、吸收过程。
光谱学 激光光谱 量子级联激光器 土壤生态 气体交换 
光学学报
2019, 39(11): 1130001
作者单位
摘要
1 安徽大学物理与材料科学学院, 安徽 合肥 230601
2 国家深海基地管理中心, 山东 青岛 266237
深海海域蕴藏着丰富的矿产、能源和生物资源, 具有潜在的巨大经济价值。深海溶解态矿物质是海底热液活动及演化的重要示踪剂。以深海海水中的硫离子为研究对象, 以迷你型高功率发光二极管(LED)作为激发光源,采用全光纤传输方式的设计理念, 结合基于朗伯-比尔定律的全光谱检测方法和化学显色法, 对深海离子矿物质的检测方法开展研究。在数据处理上, 采用自行建立的自适应性Savitzky-Golay滤波算法使光谱信噪比提高3~7倍。结果表明:在1 s时间分辨率和20 mm的有效光程下, 系统的检测灵敏度可达0.1 μmol/L以下, 且在0~32 μmol/L浓度范围内具有良好的线性响应特性(相关度R2>0.99)。
光谱学 吸收光谱 深海矿物质 原位测量 离子化合物 
中国激光
2018, 45(9): 0911011
作者单位
摘要
1 安徽大学物理与材料科学学院, 安徽 合肥 230601
2 国家深海基地管理中心, 山东 青岛 266237
将新型的外腔式宽调谐量子级联激光器(ECQCL)作为激发光源,高频石英谐振音叉作为光电探测器,开展了挥发性有机物的中红外激光光谱定量分析和成分识别研究。以不同站点和不同型号的汽油样本作为检测对象,检测它们的红外吸收光谱,并与美国西北太平洋国家实验室数据库的标准光谱进行比较,结果具有很好的一致性;实验中结合自行建立的插值算法和多元线性回归算法模型,可实现不同型号汽油样本中主要挥发性有机物的定量分析和成分归属分析。
光谱学 量子级联激光光谱 挥发性有机物 多元线性回归算法 汽油 
光学学报
2018, 38(4): 0430002
作者单位
摘要
安徽大学物理与材料科学学院, 安徽 合肥 230601
为了消除激光吸收光谱信号中噪声对分析结果的影响, 提出了基于小波变换的阈值去噪方法。利用气体分子的直接吸收光谱信号,结合MATLAB软件进行仿真实验, 深入对比分析了阈值方法、分解层数和小波基函数类型对降噪效果的影响,最后将获得的最佳滤波参数用于人体呼出气体的光谱信号分析中。结果表明, 小波变换去噪算法模型对呼出气体吸收光谱信号的去噪效果良好。通过选择其他波段的可调谐激光光源,即可实现对其他呼出气体成分的实时分析;量子级联激光光谱系统可广泛应用于呼出气体诊断等领域。
光谱学 激光光谱 小波变换 信号分析 呼吸气体诊断 
中国激光
2017, 44(11): 1111003
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院大学, 北京100049
PGP模块是超光谱成像仪中重要分光器件。 为了能够在制作前有效预测PGP整个系统的衍射效率分布及其衍射特性, 提出了PGP整体化设计方法。 从体位相全息光栅设计角度出发, 结合棱镜与光栅各项参数的制约关系, 编制了计算PGP整体衍射效率的分析软件, 综合考察了棱镜与光栅各项参数对PGP模块衍射特性的影响, 讨论了光栅布拉格波长的漂移特性, 据此设计了一种用于成像光谱仪的宽波段高衍射效率PGP分光模块。 模拟结果表明: 棱镜1材料的色散系数越小, PGP的光谱带宽越窄; 光栅布拉格波长的漂移增大了PGP模块和光栅的光谱带宽, 带宽增大使光栅的角度选择性随之增大, 拓宽了棱镜1材料的选择要求; 棱镜1顶角、 光栅的胶层厚度和相对介电常数调制度等参数是影响PGP衍射效率分布的重要因素, 制作时需要精确控制。 利用此方法设计的PGP分光模块在400~1 000 nm波段范围内衍射效率不低于50%, 并给出具体设计参数, 这对PGP制作具有一定的参考价值。
棱镜-光栅-棱镜 整体化设计 体位相全息光栅 衍射特性 角度选择性 PGP Integration design Volume phase holographic grating Diffraction characteristics Angle selectivity 
光谱学与光谱分析
2014, 34(1): 279
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
通过引入介电常数与吸收常数随膜层厚度非均匀变化函数来计算非理想调制轮廓体全息光栅的衍射效率,分析其衍射特性。根据Kamiya严格的分层计算方法,推导出了非均匀混合调制轮廓等非理想情况下的二阶耦合微分方程,据此考察了吸收常数及其调制度变化时光栅各级次衍射光的衍射特性,分析了衰减系数及相位振幅光栅异相等因素对光栅角度选择性的影响,给出光栅衍射效率对几何分层的响应程度。通过与Kogelnik和Sabol的计算方法对比,进一步论证了严格算法的准确性。结果表明,光栅衍射效率峰值随吸收常数、衰减系数及相位振幅光栅之间相位差的变化而变化;吸收调制度会小幅度增加效率峰值,但因吸收常数的存在,整体效率不高;分层数对光栅角度选择性和角谱宽度影响较小,分层数与衍射效率的收敛性表明取20层较好。该工作对非理想调制轮廓的体全息光栅衍射效率计算及其特性分析具有一定的参考价值。
光栅 体全息光栅 衍射特性 混合调制 衰减光栅 
中国激光
2014, 41(8): 0809001
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
通过引入膨胀因子随光栅胶层厚度的变化函数来研究在非均匀膨胀和收缩情况下反射体全息光栅的衍射特性。根据Kamiya严格的分层计算方法,借用Lorentz-Lorenz公式,推导出了平均折射率和折射率调制度的解析表达式,据此考察了膨胀因子以定值、线性函数、非线性函数变化时光栅+1级衍射光的衍射特性,分析了平均折射率和折射率调制度在理想情况和衰减分布时对光栅角度和波长选择特性的影响程度。给出了胶层厚度及光栅周期与曝光和未曝光区域膨胀因子的函数关系,讨论了光栅衍射效率对膨胀因子变化的响应程度。结果表明,膨胀因子的非均匀分布令光栅衍射效率曲线出现非对称分布;相比于折射率调制度,光栅布拉格角度对平均折射率变化较为敏感;曝光与未曝光区域膨胀因子会影响衍射效率峰值、光栅角带宽和波带宽。该结论对反射体全息光栅曝光后水浴膨胀与脱水收缩等工艺具有理论指导意义。
光栅 反射体全息光栅 衍射特性 非均匀膨胀或收缩 膨胀因子 角度和波长选择性 
中国激光
2014, 41(2): 0209018

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!