作者单位
摘要
1 中国科学院光电技术研究所, 成都 610209
2 中国科学院大学, 北京 100049
为提高单应性估计的准确性和解决真实标注难获取的问题, 提出一种具有修正功能的无监督单应性估计算法。该算法采用级联结构, 其思想类似于迭代, 其中每一级网络都保持相同的层数和参数量, 下一级网络输出的单应性矩阵为真实矩阵与之前输出单应矩阵和的残差。考虑到模型复杂度和实时性的需求, 文章采用两级网络级联。通过在COCO数据集中的5000张图片上进行验证, 结果表明, 相比传统方法和其他基于深度学习的方法, 所设计的级联无监督算法具有更准确的估计能力, 其在测试集中的平均像素误差为0.54, 较传统方法下降95.38%, 运行速度达到95f/s。
单应性估计 无监督学习 级联结构 回归网络 深度学习 homography estimation unsupervised learning cascade structure regression network deep learning 
半导体光电
2022, 43(1): 158

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!