作者单位
摘要
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
针对局域分布式时间同步的需求, 提出了一种基于光纤和可见光结合的短距分布式时间同步方案。融合了光纤时间同步高精度与可见光时间同步高灵活性的优势, 设计了相应的时间同步端机, 并进行了分布式实验。实验结果表明: 当光纤链路长度为3 km时, 光纤时间同步从端与光纤时间同步主端的3σ钟差优于448 ps, 时间同步秒稳优于150 ps, 万秒稳优于4 ps; 当光纤链路长度为1 km、可见光链路长度为5 m时, 可见光时间同步从端与光纤时间同步主端的3σ钟差优于1.8 ns, 时间同步秒稳优于400 ps, 万秒稳优于15 ps。
光纤时间同步 分布式时间同步 可见光通信 光测量 光纤光学 optical fiber time synchronization, distributed ti 
光通信技术
2023, 47(6): 0011
作者单位
摘要
上海交通大学 电子信息与电气工程学院 区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
提出一种相位自校准的光纤微波频率相位传递方案。该方案使用声表面波滤波器的冲激响应的窄带信号作为时间信号,使其与频率信号可同时使用同一波长进行传输。为实现稳定的可重复相位差,利用时间信号的往返传输时延来确定频率信号的整数个周期,并在多次重启的情况下验证了系统相位的稳定性。在60 km实验室平台上对所提方案进行验证,频率传递的稳定度优于4×10-14@1 s5×10-17@10 000 s。系统多次重启的情况下,所获得的平均相位差最大不一致的峰峰值为0.008 rad,对应于整个周期的0.15%,可保证较高的相位一致性。
光纤光学 光通信 时间频率传递 稳相传输 相位一致 Fiber optics Optical communications Time-frequency transfer Phase-stabilized transfer Phase consistency 
光子学报
2023, 52(9): 0906001
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
微波光子信道化链路的线性度主要受信道内的交调失真和信道间的互调失真的限制。本文提出了一种基于数字域迭代的非线性失真补偿方法,对各个信道输出的中频信号在数字域进行联合处理,通过迭代不断逼近线性化的理想结果,能够同时有效抑制信道化链路中的交调失真和互调失真。仿真结果表明,在参数无偏差的情况下,该方法可以完全抑制信道内的交调失真和信道间的互调失真;在参数偏差为5%的情况下,仍可以将三阶交调失真和互调失真分别抑制15 dB和16 dB。
傅里叶光学与信号处理 交调失真 互调失真 微波光子 数字信号处理 
光学学报
2023, 43(13): 1307001
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
在长距离光纤时间传递链路中,为了避免使用中继放大导致双向传输时延不对称以及引入附加的噪声,提出一种基于单光子探测的长距离光纤时间传递方案。将经过主端(从端)1 pulse/s时间信号控制的激光脉冲序列作为发送信号,利用从端(主端)具有极高探测灵敏度的单光子探测器接收到达信号,并基于双向时分复用同纤同波时间比对方案得到双向光纤链路传输时延变化,进而根据时间相关单光子计数和高斯拟合的数据处理方式得到两端之间钟差的时间稳定度。为了实现单光子探测器在门控模式下对长距离光纤实验系统的长期测试,设计并实现了外部触发门控工作方式下动态调整的触发控制系统。通过利用光纤链路传输时延变化量,实现对门控触发信号的控制。350 km单模光纤和对应长度的色散补偿光纤(链路总损耗约为100 dB)的时间传递系统实验结果表明,时间传递稳定度优于1.5 ps@1 s和0.4 ps@8192 s。所提方法为长距离高精度光纤时间传递提供了一种有效的解决方案。
光纤 时间传递 单光子探测 双向时分复用 传输时延 
光学学报
2023, 43(13): 1306004
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
受激布里渊散射效应具有窄带增益的特性,是实现低本底噪声激光器的一种有效方式。基于高Q值光纤环形谐振腔研究低噪声布里渊激光器。通过Pound-Drever-Hall(PDH)锁定技术将泵浦光锁定到8 m长的单模环形谐振腔中,可得到与泵浦光相差一个10.81 GHz频率的反向传播斯托克斯光。采用相关延迟自外差方法测量斯托克斯光的频率噪声。实验结果表明,基于光纤环形谐振腔的布里渊激光器的阈值为5.3 mW,在高频部分(频率大于10 kHz)处,后向斯托克斯光对泵浦光频率噪声的抑制达到30 dB,接近理论抑制极限(34 dB)。
激光器 布里渊激光器 光纤环形谐振腔 后向斯托克斯光 布里渊阈值 频率噪声 
光学学报
2022, 42(19): 1914002
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
矢量网络分析仪是射频微波领域的重要测量仪器,设计实现了一套基于光采样的微波光子矢量网络分析仪。该系统使用锁模激光器的超稳光脉冲序列通过马赫-曾德尔调制器直接采样单音信号,再采用数字信号处理技术获取待测器件的散射参数。实验测试表明:采用20 GHz电光调制器实现的系统带宽可达20 GHz,更大的系统带宽可以通过采用更大带宽的电光调制器达到。系统的动态范围约为60 dB,最小频率分辨率为11.92 Hz。对中心频率为10 GHz的带通滤波器的散射参数(S参数)进行了测试,在通带范围内,与商用矢量网络分析仪的测试结果相比,S21的幅度平均偏差为0.1241 dB,S21的相位平均偏差为3.6356°,具有很好的一致性。
仪器,测量与计量 微波测量 矢量网络分析 散射参数 光采样 
光学学报
2022, 42(13): 1312002
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

面向基于微波光子一体化信号处理与数字化的快速、大范围跳频接收机,设计并实现了自动同步捕获方案。所设计的同步方案基于直接功率探测-顺序搜索算法,利用现场可编程门阵列控制并调整本地接收跳频图案的时序,实现了切换时间约为4 ms、跳频频率达到33 GHz的跳频信号的自动同步捕获接收。

傅里叶光学 滤波 微波光子 跳频接收 同步捕获 顺序搜索 
光学学报
2022, 42(13): 1307001
作者单位
摘要
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
为了对现有的时间传递系统进行管理和控制,保障系统的灵活性、完备性、安全性和高可用性,设计了一整套光纤时间传递监控系统。在系统结构上采用集中式的结构,在功能上包括故障管理、性能管理、配置管理、安全管理和数据存储与管理5个部分,并对各个功能的具体实现方法作了详细的说明。监控系统对时间传递系统各节点进行集中管理和分散控制,并将获取到的数据存储在数据库中。最后在基于双向时分复用同纤同波的点对点时间传递系统上测试了监控系统,实验表明该系统能够对系统实时监控并对故障做出一定的处理,具有较高的可靠性。
时间传递 系统监控 故障管理 光纤传输 time transmission system monitoring fault management fiber transmission 
光学仪器
2022, 44(3): 81
作者单位
摘要
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
针对采用分立器件实现载波抑制双边带(DSBCS)调制的被动补偿光纤环路微波频率传递方案的缺陷, 对基于DSBCS调制的光纤环路微波频率传递系统进行稳定性优化设计和测试验证, 设计了基于微波芯片的一体化接入节点电路, 以腔体分隔的金属和高精度的温度控制模块屏蔽串扰、减小外界温度影响, 实验测试了系统电路底噪、60 km光纤环路系统性能。测试结果表明: 采用集成化的接入节点电路显著降低了系统电路底噪和1 m光纤传递底噪, 在60 km光纤环路的20 km/40 km、40 km/20 km处输出频率的相对稳定度均优于4×10-14/s、2×10-17/day, 长期稳定度比采用分立器件实现的节点电路时优化约一个量级。
微波频率传递 载波抑制 优化 温度 电路底噪 radio frequency transfer, carrier suppression, opt 
光通信技术
2022, 48(1): 25
作者单位
摘要
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
2 国网上海市电力公司, 上海 200122
设计了一种基于双向时分复用同纤同波传输的时间同步系统。为了消除钟差,实现从端与主端的时间同步,利用双向时分复用同纤同波时间比对得到从端与主端的钟差,通过校频和比例-积分-微分控制算法调整从端压控晶振的输出频率。双向时分同纤同波传输链路双向传输的时延对称性,使系统只需进行端机标定,无需对不同长度的光纤链路进行标定。在实验室盘纤和实地光纤链路上的实验结果表明,不同长度光纤链路下,本系统同步后的平均钟差均优于10 ps;在长约60 km的实地光纤链路上,本系统同步后的平均钟差小于9 ps,3σ钟差优于285 ps,时间偏差优于16 ps/s(短稳)、7 ps/10 4 s(长稳)。
光纤光学 时间同步 双向时分复用 时钟驯服 
中国激光
2021, 48(9): 0906005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!