汪惜今 1,2徐青山 1,*范传宇 1,2,4程晨 3[ ... ]徐赤东 1
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所基础科学研究中心, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室,安徽 合肥 230031
4 皖西学院电气与光电工程学院, 安徽 六安 237012
5 安徽建筑大学电子信息工程学院, 安徽 合肥 230601
为丰富整层大气气溶胶光学厚度测量手段,提出了一种综合微脉冲激光雷达与地面能见度测量数据的探测方法。该方法首先利用激光雷达数据反演得到气溶胶垂直消光系数廓线,据此计算出气溶胶标高;再利用能见度和消光系数的关系得到近地面水平方向的消光系数;最后,将近地面消光系数和标高结合,从而得到整层大气气溶胶光学厚度。将该方法应用于合肥地区,成功得到该地区整层大气气溶胶光学厚度的昼夜变化趋势,验证了该方法的可适应性。
气溶胶光学厚度 气溶胶标高 激光雷达 能见度 aerosol optical depth aerosol scale height lidar visibility 
大气与环境光学学报
2023, 18(1): 14
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽 合肥 230031
3 农业生态大数据国家地方联合工程研究中心, 安徽大学, 安徽 合肥 230601
农药直接污染环境和食物, 最终被人体吸收。 其残留物具有高毒性, 对人体健康造成严重影响。 色谱法、 气液色谱串联质谱法等在农药残留检测中应用较为广泛, 但存在预处理步骤复杂、 费时耗力等缺点。 表面增强拉曼光谱(SERS)技术因具备灵敏度高、 特异性好、 提供全面指纹信息且对样品无损等优点被视为一种新型农残检测方法, 可通过简单提取实现液体或固体样品中痕量农药残留的高效检测。 在这篇综述中, 主要从SERS的增强基底制备、 检测方法以及光谱智能解析三个方面对农药残留SERS检测技术及方法的研究进展进行综述, 以期为农药残留检测方法提供新的参考。 首先, 针对SERS增强基底制备, 单一的贵金属溶胶纳米颗粒因其“热点”随机、 不可控等因素导致稳定性和灵敏性较差, 已不能满足痕量农药残留检测。 为提高SERS基底的吸附能力使待测物在其表面富集且信号不发生显著变化, 对单一贵金属溶胶纳米颗粒进行组装, 或加入化学物质、 惰性材料等进行修饰制备均一性高的SERS复合基底, 保证SERS信号有良好的重现性和灵敏性。 其次, 为了实现特异性和高灵敏检测, SERS检测方法不再只以单纯的金、 银纳米颗粒作为增强基底, 而是逐渐趋向于优化样本前处理技术、 化学修饰法制备特异性SERS探针、 基底物理结构突破以及动态SERS(D-SERS)检测等方向发展。 在获得物质的拉曼光谱后, 有效拉曼特征区通常在较短的波数范围内, 而光谱数据高达上千维, 冗余较多, 导致后续分析复杂度增加。 SERS光谱智能分析则采用化学计量学方法对原始光谱进行预处理、 特征提取和模型构建, 实现数据降维和主要信息提取, 进而实现农残的定性与定量。 综上, SERS作为一种快速检测农药残留的方法具有很好的发展前景, 可为今后的分析检测领域提供新的借鉴。
表面增强拉曼光谱 农药残留 特异性SERS探针 动态SERS 化学计量学 Surface-Enhanced Raman Spectroscopy Pesticide residues Specific SERS probes Dynamic SERS Chemometrics 
光谱学与光谱分析
2021, 41(11): 3339
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
4 安徽四创电子股份有限公司,安徽 合肥 230088
基于自行研制的一种自动快速变视场太阳光度计(VFOVSP),实现了不同视场内太阳辐射的快速测量,为地基区分气溶胶粒子与云粒子提供了 一个新的技术手段。新型光度计采用基于CCD图像传感器的太阳跟踪技术,并采用程控可变视场光阑,实现了在较短的时间间隔内对 不同视场值的快速测量。通过在不同的天气条件下,对仪器不同视场测量数据分析初步表明:通过比较不同视场测量的大气光学厚度的 变化,可提供一种薄卷云与气溶胶的区分技术。该方法可以较快地识别出当前大气环境中是否有卷云存在,为研究卷云特性提供了基础。
新型光度计 不同视场 光学厚度 卷云识别 novel photometer different fields of view atmospheric optical thickness cirrus clouds recognition 
大气与环境光学学报
2020, 15(3): 189
范传宇 1,2,3程晨 1戚鹏 1,2,4刘向远 3[ ... ]徐青山 1,*
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
3 皖西学院电气与光电工程学院, 安徽 六安 237012
4 安徽建筑大学电子与信息工程学院, 安徽 合肥 230031
提出一种渐近辐射传输(ART)理论与离散纵标辐射传输法(DISORT)相结合的方法,用于反演雪光谱反照率。基于雪粒形状的二级科赫分形假设,利用不同卫星数据与ART理论的三种粒径反演方法反演研究区域的雪粒径,反演的雪粒径大小不同,但平均值均在50 μm左右。基于雪粒球形假设,根据反演的雪粒径,基于DISORT模型计算波段为0.3~5.0 μm的雪光谱反照率,同时基于ART理论计算波段为0.3~1.5 μm的雪的黑空与白空光谱反照率。由两种辐射传输模型计算的0.3~1.5 μm的雪光谱反照率差异较小,表明雪粒形状假设合理,利用两种辐射传输模型相结合的方法能够计算太阳光谱的雪反照率。考虑到研究区域内黑碳等吸光性杂质的影响,修正了DISORT模型计算的雪光谱反照率。研究区域靠近国境边缘的西伯利亚地区时,吸光性杂质对于雪光谱反照率影响很小;研究区域为东北工业地区时,吸光性杂质会明显降低可见光波段的雪光谱反照率。
大气光学 雪反照率 雪粒径 吸光性杂质 离散纵标辐射传输法 渐进辐射传输理论 
光学学报
2020, 40(9): 0901002
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院核能安全技术研究所, 安徽 合肥 230031
故障诊断系统已成为确保工业系统及设备安全运行的重要辅助工具。在故障发生的早期阶段,故障诊断系统可以快速提供早期预警信息,并为故障缓解方案制定提供参考。为此,提出了一种基于光学灰度图像辨识的故障诊断方法。该方法根据实时监测数据构造系统的运行状态图像,通过CCD摄录的方式截取灰度图像,并从不同分辨率的系统灰度图像近似直方图中提取出系统的灰度图像特征。根据这些特征与标准特征之间的欧式距离比较,将当前状态划分为相距最小的标准特征类。实验结果表明该方法能够快速且正确地检测出故障类型,为系统相关设计与维护人员提供有效的支持信息。
图像处理 故障诊断 灰度图像 欧氏距离 image processing fault diagnosis gray image Euclidean distance 
量子电子学报
2019, 36(6): 699
张战盈 1,2蔡熠 3余东升 3陈海燕 3[ ... ]徐赤东 1,3,*
作者单位
摘要
1 中国科学院合肥物质科学研究院医学物理与技术中心医学物理与技术安徽省重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所基础科学研究中心, 安徽 合肥 230031
提出了一种基于相关计算的激光雷达三光束二维风场反演方法。三束激光从同一平面发射,通过计算三束激光时间序列上的回波信号相关性反演二维风场信息。详细阐述了三光束二维风场反演方法的原理和计算过程,基于此方法搭建了相关二维测风激光雷达系统,实现了30 m距离分辨率和1 s时间分辨率的二维风场探测。分析了系统中激光雷达夹角对测量结果的影响和相关计算时不同时间序列长度下相关系数曲线的变化,给出了合适的激光雷达夹角和时间序列长度。用该系统进行了水平测风实验,对比了系统探测数据和探测路径上风塔的风速、风向传感器数据,结果表明系统和传感器的数据具有较好的一致性。
大气光学 激光雷达 相关计算 二维风场 时间序列 
光学学报
2019, 39(6): 0601003
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
散射相函数是研究电磁波传输特性的重要参数, 直接影响电磁波传输方程的简化程度和解的精度。 基于电磁散射与辐射传输中的基本理论, 对非球形粒子散射相函数的经验公式进行了研究。 为了很好的模拟非球形粒子的后向散射峰值, 提高辐射传输方程的简化程度和解的精度, 提出了一种新的相函数经验公式。 分析新的相函数对非球形粒子的适用性, 以单个沙尘性气溶胶为例, 计算了不同形状粒子的Henyey-Greenstein*相函数和新的相函数随角度的变化, 并与T矩阵法的计算结果进行了对比, 发现椭球形粒子的长短轴比和有限长圆柱形粒子的径长比大于0.5时, 新的相函数在大角度后向散射部分与T矩阵法的吻合程度较高。 考虑波长变化, 对比了尺寸谱满足对数正态分布的四种气溶胶粒子的Henyey-Greenstein*相函数和新的相函数与T矩阵法的计算结果。 研究表明, 对于椭球形粒子和有限长圆柱形粒子, 在大角度(大于90°)后向散射部分, 除了0.694时的椭球形海洋性气溶胶, 新的相函数均方根差较小的占100%, 证明了新的相函数可以较好的模拟非球形粒子的后向散射特征。 新的相函数对准确模拟辐射传输过程具有重要意义。
非球形粒子 相函数 经验公式 后向散射 Non-spherical particle Phase function Empirical expression Backward scattering 
光谱学与光谱分析
2019, 39(1): 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
3 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
4 中国科学技术大学环境科学与光电技术研究院, 安徽 合肥 230026
与气溶胶粒子相比,前向小角度太阳透射比值变化对卷云中的冰晶粒子更加敏感。研发了一种基于图像跟踪、自动快速变视场的太阳光度计VFOVSP,它可快速测量窄视场到宽视场太阳的透射辐射,为地基测量卷云提供了新的技术手段。介绍了仪器的系统组成与测量原理。在大气无吸收波段,将仪器VFOVSP经Langley法标定后的测量结果与POMO2的测量结果进行对比,以验证仪器测量精度的可靠性。在不同的天气条件下进行测量,结果表明:不同小角度视场下透射比值的变化与粒子的种类有关,这为区分薄卷云和气溶胶粒子提供了可能。该仪器弥补了传统太阳光度计在有云天气下实时性、单一视场探测的不足,可以较好地识别出当前大气下是否有卷云存在,能够更好地满足实际科研需求。
光学器件 可变视场 光度计 卷云探测 图像跟踪 
光学学报
2018, 38(10): 1012001
杨东 1,2,*徐文清 2,3徐青山 1,2,*魏合理 2,3,4李建玉 3,*
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
3 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
4 中国科学技术大学环境科学与光电技术研究院, 安徽 合肥 230026
前向小角度的散射辐射分布与散射介质的粒子大小和光学厚度有关。基于一种新型变视场光度计,测量不同天气条件下的前向小角度散射比值、大气光学厚度τ和气溶胶粒子的Angstrom指数α,并与DISORT方法模拟结果进行对比分析。研究结果表明:散射比值随光学厚度的增大而增大;但当光学厚度τ <1时,散射比值取决于粒子有效尺度,粒子尺度越大,散射比值越小。卷云冰晶尺度较大时 (De>10 μm),其散射比值小于气溶胶粒子和水云,这为区别薄卷云与气溶胶提供了一种新方法。给出一种提取卷云光学厚度的简单方法,证明了卷云的消光系数在短波段与波长无关。以上研究为地基探测大气特性提供了一定参考价值。
大气光学 前向散射比值 Angstrom指数 云粒子 
光学学报
2018, 38(10): 1001004
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
3 北京系统工程研究所, 北京 100101
使用通用大气辐射传输软件模拟计算了卷云大气条件下强吸收波段的反射率,分析了卷云粒子形状和有效尺度、光学厚度和卷云高度对大气顶反射率和背景辐射的影响。建立了高温气体目标的辐射强度计算模型,并通过模拟获取了目标辐射在卷云大气中传输至大气顶的光谱辐射特性。计算了大气顶的目标背景对比度,并讨论了卷云特性参数和目标高度对目标背景对比度的影响。结果表明:在水汽强吸收波段,卷云大气反射率随卷云高度和光学厚度的增加而增大、随卷云粒子有效尺度的增大而减小;目标背景对比度受卷云参数的影响较大,尤其当目标高度在7 km以下时卷云对目标观测的干扰很大。
大气光学 卷云 大气反射率 目标背景对比度 红外辐射 
光学学报
2017, 37(8): 0801001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!