作者单位
摘要
1 中国农业大学烟台研究院, 山东 烟台 264003中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083
2 中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083中国农业大学农业农村部农业信息获取技术重点实验室, 北京 100083
3 中国农业大学烟台研究院, 山东 烟台 264003中国农业大学农业农村部农业信息获取技术重点实验室, 北京 100083
土壤磷素是植物最重要养分之一。 磷素在土壤中动态性强, 检测困难, 在可见-近红外光谱范围没有明显吸收波段, 因此研究基于其他光谱手段的磷素快速检测方法对于发展精细农业和智慧农业具有重要意义。 拉曼光谱具有受水分干扰小, 样本预处理小、 与红外光谱信息互补等特点, 国内外很多学者尝试了应用拉曼光谱对土壤磷素的检测。 但是, 拉曼信号弱, 稳定性差, 制约了拉曼光谱在土壤检测方面的应用。 为进一步弄清拉曼光谱与磷素的定量关系, 采用水溶性磷(KH2PO4)为研究对象, 研究了不同磷浓度的KH2PO4溶液对拉曼光谱产生的影响。 采用移动平均(MA)、 MA+基线校正(BL)、 MA+标准正态变量(SNV)、 MA+多元散射校正(MSC)对原始光谱(RS)进行预处理, 分析了低浓度(0.02~5 g·L-1)与高浓度(5.21~93.87 g·L-1)区间KH2PO4拉曼光谱的变异特性及其与磷浓度之间的关系, 建立了磷浓度含量的预测模型。 结果表明: (1)低浓度区间与高浓度区间光谱的变异系数具有显著差异, 高浓度区间光谱的离散程度较大; (2)低浓度区间的拉曼光谱未检测到明显的拉曼波峰, 浓度变化展现了明显的基线变化。 偏最小二乘(PLSR)模型决定系数R2=0.28~0.36; (3)高浓度区间的拉曼光谱在863与1 070 cm-1处检测到明显的拉曼波峰, PLSR建模结果为R2=0.65~0.7。 MA+SNV、 MA+MSC处理比MA单独处理模型预测精度高, 说明磷酸根的拉曼特征峰为模型主要贡献因子; (4)使用全浓度区间PLSR建模可增加PLSR模型精度(R2=0.73~0.89)。 使用RS建模的精度最高, 说明基线漂移对PLSR结果具有积极作用; (5)通过PLSR回归系数, 选取645、 863、 1 070和1 412 cm-1四点波段建立多元线性回归(MLR)模型, 决定系数R2接近1。 说明特征峰选取可以滤除背景光干扰, 抽取有效磷酸根浓度信号。 (6)由以上结果可知, 利用拉曼光谱定量检测水溶性磷的含量是可行的, 降低背景光干扰、 提高拉曼信号的稳定性的同时, 开发特征波段选择方法、 提高模型可重复性及抗干扰能力是高分辨率拉曼光谱检测技术的关键。
拉曼光谱 土壤磷素 光谱分析 变异系数 回归系数 Raman spectroscopy Soil phosphorus Spectral analysis Coefficient of variation Regression coefficient 
光谱学与光谱分析
2023, 43(12): 3871
作者单位
摘要
1 中国农业大学“智慧农业系统集成研究”教育部重点实验室, 北京 100083
2 中国农业大学“智慧农业系统集成研究”教育部重点实验室, 北京 100083中国农业大学农业农村部“农业信息获取技术”重点实验室, 北京 100083
叶面积指数(LAI)是评价作物长势的重要参数, 快速、 准确、 低成本地获取作物LAI对于指导作物田间管理有重要的意义。 为了低成本获取多种作物的LAI, 基于多源信息和深度学习构建了通用的LAI预测模型。 在大豆、 小麦、 花生、 玉米四种作物的六个生长时期进行了大田实验, 以获取用于建模的多源信息。 使用航拍无人机获取作物低空可见光图像、 红边图像和近红外图像等多光谱图像信息, 此外还采集相关的一维数据信息, 包括无人机飞行姿态、 拍摄高度、 作物生长状态和环境光照。 借助深度学习出色的图像和数据处理能力建立基于复杂输入信息的LAI预测模型, 考虑到一维数据也要参与模型的训练过程, 在设计模型时, 采用了组合型网络架构。 在卷积神经网络(CNN)算法提取图像深度特征的基础上加入了LightGBM算法用于结合图像特征和一维数据实现作物LAI的最终预测。 CNN模型部分使用了VGG19, ResNet50, Inception V3和DenseNet201四种常见的结构。 为了更好地说明CNN模型提取图像特征的能力, 分析了不同图像输入下四种模型的作物分类情况。 结果表明, 以可见光、 红边和近红外图像为输入时, 四种模型的分类准确度均相较于仅有可见光图像时有所提高, 尤其是基于Inception V3和DenseNet201的两种模型分类准确率均达到99%以上, 证明了CNN模型提取多光谱图像特征的有效性。 将图像特征作为LightGBM模型的输入信息预测LAI时, 实测值与预测值的R2最大为0.819 2, 而在输入中加入一维数据信息后, 模型的R2均可达到0.9以上, 说明多源信息输入对于提高LAI预测模型的准确度有重要作用。 该研究建立的模型可以针对不同的作物进行LAI的预测, 不需要对多光谱图像进行复杂的处理, 因此, 该研究可以实现LAI的低成本、 快速预测, 同时可以获得较高的预测准确度。
叶面积指数 多光谱图像 多源信息 组合型网络架构 预测模型 Leaf area index Multispectral image Multi-source information Combined network architecture Prediction models 
光谱学与光谱分析
2023, 43(12): 3862
作者单位
摘要
中国农业大学智慧农业系统集成研究教育部重点实验室, 北京 100083
针对中国农田存在种植景观破碎化和复杂的种植结构这一现状, 如何实现目标作物的高精度识别与制图对作物产量估算、 粮食政策调整和国家粮食安全保障具有十分重要意义。 基于Google Earth Engine(GEE)遥感数据处理云平台, 提出一种冬小麦不同生育期的种植结构提取方法, 该方法以2021年覆盖目标作物关键生育期的多时相Sentinel-2影像为数据源, 综合考虑光谱波段特征、 光谱指数特征、 纹理特征和地形特征等多维特征变量, 利用GBDT(gradient boosting decision tree)分类器对不同生育期田块尺度的冬小麦种植面积和空间分布信息进行快速精准提取, 并探讨了冬小麦识别的最佳生育期。 此外, 对比分析了常见的不同分类模型在田块尺度条件下的作物识别性能。 以河南陈固镇为研究区开展实验, 实验结果显示, 冬小麦在起身拔节期的地物识别准确率相对较高, 总体分类准确率为94.61%, Kappa系数为92.68%; 在抽穗扬花期的识别精度最高, 总体分类准确率为97.01%, Kappa系数为95.52%; 但在灌浆乳熟期的分类精度偏低, 总体分类准确率为86.23%, Kappa系数为81.33%。 研究结果表明, 在冬小麦抽穗扬花期, GBDT分类器能对田块尺度条件下的土地覆盖信息进行有效提取, 进而取得较好的地物分类识别效果。 此外, 本研究将GBDT与传统分类器如随机森林(random forest, RF)、 CART(classification and regression tree)和朴素贝叶斯(Naive Bayesian, NB)进行相比。 结果表明, GBDT分类器的地物识别效果最佳, 总体分类准确率比RF分类器和CART分类器分别提高了1.20%和5.99%, Kappa系数比RF分类器和CART分类器分别提高了1.61%和8.04%, 朴素贝叶斯分类器的识别效果最差, 总体分类准确率和Kappa系数分别为84.43%和78.69%。 研究结果可为田块尺度作物精细提取提供有效的技术支持。
GBDT分类器 Sentinel-2卫星传感器 冬小麦 种植结构提取 Google Earth Engine Google Earth Engine GBDT classifier Sentinel-2 satellite Winter wheat Planting structure extraction 
光谱学与光谱分析
2023, 43(2): 597
孟繁佳 1,*罗石 1吴月峰 1孙红 1[ ... ]李穆 3
作者单位
摘要
1 中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
2 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
3 吉林省农业科学院玉米研究所, 吉林 长春 130033
玉米种子穗腐病是危害玉米产量的主要病害之一。 利用近红外光谱开展了玉米种子穗腐病判别模型研究。 246粒玉米种子由吉林省农业科学院海南育种基地提供, 其中96粒玉米种子为穗腐病染病样本, 其他150粒玉米种子为同种玉米正常样本。 利用MATRIX-Ⅰ型傅里叶近红外光谱仪采集了样本800~2 500 nm范围的近红外光谱信息, 并对样本近红外光谱数据利用多元散射校正(MSC)进行预处理。 结合玉米内部有机物质的近红外光谱的敏感波段和样本近红外光谱吸收峰挑选了4个优选区间, 并采用相关系数法(CA)、 连续投影算法(SPA)和竞争性自适应重加权算法(CARS)三种不同原理的特征波长提取算法分别提取了4(1 362, 1 760, 2 143和2 311 nm)、 5(1 227, 1 310, 1 382, 1 450和1 728 nm)和10(1 232, 1 233, 1 257, 1 279, 1 313, 1 688, 1 703, 1 705, 2 302和2 323 nm)个特征波长。 以提取得到的特征波长作为玉米种子穗腐病判别模型输入变量, 用0-1(染病-正常)表示样本染病状况作为输出真实值建立支持向量机(SVM)模型, 使用网格搜索法结合十折交叉验证法对模型参数进行优化。 结果表明, CA-SVM, SPA-SVM和CARS-SVM三种判别模型中训练集和测试集建模准确率均在90%以上。 该研究成果为玉米种子病害诊断装置提供了模型基础, 且针对优选区间进行特征波长选择的方式也可以为建立其他种子病害判别模型提供参考。
近红外光谱 玉米种子 穗腐病 特征波长 Near-infrared spectrum Corn seeds Ear rot Characteristic wavelength 
光谱学与光谱分析
2022, 42(6): 1716
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
叶绿素是作物生长诊断的重要参数, 对其进行高效检测是农田精细化管理的基础。 PROSPECT模型是作物光谱学检测研究的重要工具, 可为建立高精度叶绿素诊断模型提供数据集基础。 为了建立具有普适性的田间玉米作物叶绿素含量检测模型, 使用PROSPECT模型输入叶片结构参数和生化参数模拟叶片400~2 500 nm波段反射率曲线10 650条。 在其他参数设置保持不变的情况下, 分析光谱反射率曲线对叶绿素含量参数的敏感性, 结果显示叶绿素含量仅在400~780 nm区间对光谱反射率曲线产生影响。 讨论了3种叶绿素检测特征波长筛选策略, 分别为: 根据敏感性分析结果, 选出548~610和694~706 nm区域共计76个波长, 记为SEN-BAND; 基于反向区间偏最小二乘法(Bi-PLS)筛选5个区间共计91个波长, 记为BP-BAND; 基于连续投影算法(SPA), 在叶绿素影响区域400~780 nm筛选10个特征波长, 记为SPA-BAND。 进而使用2019年、 2020年两年期田间实测玉米叶片光谱反射率曲线和叶绿素含量数据, 分别应用上述3种方法选取的特征波长构建玉米叶片叶绿素含量检测模型。 结果显示, 使用SPA-BAND特征波长构建的模型, 在两年期数据中均得到最佳结果。 2019年数据模型建模集决定系数(Rc2)为0.815 6, 建模集均方根误差RMSEC为2.908 6, 验证集决定系数(Rv2)为0.799 5, 验证集均方根误差RMSEV为2.997 7。 2020年数据模型建模集决定系数(Rc2)为0.949 2, 建模集均方根误差RMSEC为0.976 8, 验证集决定系数(Rv2)为0.910 2, 验证集均方根误差RMSEV为1.562 9。 表明, 基于PROSPECT模型筛选叶绿素含量特征波长建立的叶绿素诊断模型具有普适性。
PROSPECT模型 叶绿素 波长筛选 PROSPECT model Chlorophyll Wavelength selection SPA Bi-PLS PLSR SPA Bi-PLS PLSR 
光谱学与光谱分析
2022, 42(5): 1514
作者单位
摘要
1 中国农业大学烟台研究院, 山东 烟台 264670
2 中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
基于光谱的土壤氮含量预测模型泛化能力弱是制约其推广应用的瓶颈。 鉴于特征提取及非线性表达能力方面的优势, 深度学习模型具有较强的泛化能力。 提出一种融合自动编码器和卷积神经网络(Encoder-CNN)的土壤氮含量光谱预测模型, 探索模型结构和参数对模型性能的影响。 根据以往研究成果和相关性分析, 获得180个与氮含量强相关的波长, 将其作为Encoder-CNN模型输入, 而将土壤氮含量作为模型输出。 Encoder-CNN模型利用自动编码器的编码部分进行光谱数据降维, 然后输入到卷积神经网络进行土壤氮含量预测。 设计2种网络结构, 每种网络结构包含2种不同参数设置, 共4个模型, 用以探索Encoder-CNN土壤氮含量光谱预测模型结构和参数对模型性能的影响。 利用公开数据集LUCAS对模型进行训练。 按3σ原则对公开数据集LUCAS进行异常值检测与处理, 获得20 791个数据, 其中18 711个样本作为训练集, 2 080个样本作为测试集, 对Encoder-CNN模型进行训练。 结果表明: 对于自动编码器, 在相同隐含层数下, 最后的隐含层神经元个数为30时, 复现效果最优。 增加隐含层数, 会提升复现效果。 增加卷积核数量, 特别是尺寸为1×1卷积核, 能够提高模型的预测性能与可靠性。 增加池化层的网络结构, 模型预测精度提升至0.90以上。 增加全连接层神经元数量也会提升模型性能。 利用自采集的黑龙江黑土实时光谱数据集进行模型迁移, 观察模型泛化能力。 当模型迭代100次后, 在黑龙江数据集上的预测精度即可达到0.90以上; 当迭代次数为900时, 模型在训练集和测试集上的预测精度可以达到0.98。 结果表明, 所构建的Encoder-CNN土壤氮含量光谱预测模型具有较好的泛化能力。
土壤 氮含量 光谱预测 卷积神经网络 自动编码器 Soil Nitrogen content Spectral prediction Convolutional neural network Auto-encoder 
光谱学与光谱分析
2022, 42(5): 1372
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
土壤粒度是对土壤近红外光谱造成严重干扰的主要因素之一。 通常在样本前处理阶段采用研磨和过筛土壤来降低土壤粒度干扰, 在数据处理阶段通过对连续光谱微分法等数学方法消除土壤粒度干扰。 但是对于近红外波段离散波长的建模, 至今没有有效的方法消除土壤粒度干扰。 为此, 提出了土壤粒度修正法以解决土壤粒度干扰消除难题。 首先建立土壤粒度修正模型, 将农田采集的标准土壤在实验室烘干消除水分后, 进行土样配置, 得到4个土壤粒度(2.0, 0.9, 0.45, 0.2 mm)和6个全氮浓度等级(0, 0.04, 0.08, 0.12, 0.16, 0.2 g·kg-1)的96个土壤样本。 采用MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集土壤样本近红外光谱, 计算四个不同粒度(每个粒度包含24个土壤样本)和全部土壤样本在每个波长处(850~2 500 nm)所有样本间吸光度的光谱标准偏差, 分析得到土壤粒度的特征波段为1 361和1 870 nm。 采用特征波段吸光度比值作为单一输入变量建立SVM土壤粒度分类模型, 土壤粒度整体分类准确率为93.8%, 表明对土壤粒度进行分类是可行的。 选择本研究团队开发的基于近红外波段离散波长(1 070, 1 130, 1 245, 1 375, 1 550, 1 680 nm)吸光度的车载土壤全氮检测仪对提出的土壤粒度修正模型进行验证。 结果表明修正后粒度为2.0, 0.9和0.45 mm的吸光度和原始土壤吸光度分别降低了62%, 74%, 111%和61%。 表明土壤粒度修正法可以显著减小土壤粒度干扰。 最后采用BPNN建立不同吸光度的全氮模型, 相较于原始吸光度模型, 修正后的土壤吸光度模型Rv2提高了25%。 表明提出的土壤粒度修正法可以显著减小土壤粒度对近红外光谱离散波长吸光度的干扰, 提高车载土壤全氮检测仪的测量精度。
土壤粒度干扰 近红外离散波长 光谱标准偏差 土壤粒度修正法 Soil particle size disturbance NIR discrete wavelength Standard deviation Soil particle size correction method SVM SVM 
光谱学与光谱分析
2021, 41(12): 3682
作者单位
摘要
中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
为了快速感知并分析田间作物生长状况, 采用先进的半导体镀膜工艺的光谱成像传感器, 研究镀膜型光谱成像数据的提取与叶绿素含量分布式检测的方法。 实验采用基于镀膜原理的IMEC 5×5成像单元式多光谱相机, 对47株苗期玉米植株的冠层进行拍摄, 获取673~951 nm范围内的25个波长的光谱图像。 利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量指标, 每株玉米冠层叶片设置2~3个采样点, 每点测量3次取平均, 共计251个样本数据; 同时使用ASD Handheld2型光谱仪采集相应位置区域的反射率曲线, 以对比分析镀膜型光谱成像传感器提取玉米植株冠层叶片反射率曲线的特性。 首先, 在分析镀膜型光谱成像传感器的成像原理的基础上, 通过对原始图像的拆分和重组分别提取成像单元中相同波段的像素灰度值, 并利用相同波段的像素灰度值重构单波段光谱图像, 获取各波段光谱图像。 其次, 利用4灰度级标准板建立图像灰度值和灰度板反射率之间的线性反演公式, 对提取的反射率进行校准。 然后, 为了准确分割出玉米植株冠层, 提出了大津算法(OTSU)和霍夫圆变换组合的玉米植株冠层图像二次分割方法, 分别剔除图像中土壤和培养盆背景的干扰。 最后, 利用马氏距离算法剔除异常样本数据, 利用SPXY (sample set partitioning based on joint X-Y distance)算法划分建模集和验证集, 采用偏最小二乘回归法(PLSR)建立玉米植株叶绿素含量指标诊断模型, 并绘制其分布伪彩色图用于分析叶绿素含量空间分布特征。 研究结果表明, ①对25波段多光谱图像提取和反射率线性校准拟合模型决定系数均达到0.99以上。 分析校准前和校准后与ASD光谱仪测量反射率曲线, 镀膜型成像传感器获取玉米冠层反射光谱总体与ASD采集反射率体现的光谱特征一致, 且校正后数据比校正前与ASD光谱反射率的一致性得到了提升。 ②建立初次OTSU分割算法和基于霍夫圆变换识别的二次分割算法, 可以有效剔除玉米植株光谱图像中的土壤和培养盆背景噪声的干扰。 ③叶绿素含量指标PLSR诊断模型建模集R2c为0.545 1, 验证集R2v为0.472 6。 玉米作物冠层叶绿素分布可视化图可以直观反映叶绿素含量分布与生长动态情况。 通过对镀膜型光谱成像传感器应用方法的研究, 为后续玉米植株叶绿素动态快速检测奠定基础和提供技术支持。
镀膜型传感器 光谱成像 光谱校准 图像分割 玉米植株 Coating sensor Spectral imagery Spectral correction Image segmentation Maize plant 
光谱学与光谱分析
2020, 40(5): 1581
作者单位
摘要
1 中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
2 Center for Precision & Automated Agricultural System, Washington State University, Pullman WA 99350, USA
为了探究马铃薯作物叶绿素吸收特征, 充分解析光谱特征波长变量, 建立高精度叶绿素含量检测模型。 在马铃薯发棵期(M1)、 块茎形成期(M2)、 块茎膨大期(M3)和淀粉积累期(M4)4 个关键生长期, 利用ASD便携式光谱仪采集80个样本区的314组作物冠层反射率数据, 并同步采集叶片测定叶绿素含量。 在光谱数据预处理之后, 分析了马铃薯不同生长期的光谱反射率变化特征。 利用基于模型集群思想的蒙特卡洛无信息变量消除(MC-UVE)、 随机蛙跳(RF)、 竞争自适应重加权采样(CARS)三种算法筛选叶绿素特征波长, 建立叶绿素含量检测PLS模型。 对4个生长期的314个样本, 采用SPXY算法分别按照3∶1的比例划分, 得到建模集240个样本、 验证集74个样本。 利用MC-UVE, RF, CARS三种算法筛选叶绿素特征波长, 讨论迭代次数(N)和特征变量个数(LV)对MC-UVE和RF算法、 迭代次数(N)对CARS算法筛选特征波长结果的影响, 对迭代次数设置6个梯度, 分别为N=50, 100, 500, 1 000, 5 000和10 000; 对特征变量数设置4个梯度, 分别为LV=15, 20, 25和30。 以PLSR模型的验证集结果为评价指标, 分析迭代次数(N)和特征变量数(LV)的最优参数组合。 最后基于MC-UVE, RF和CARS算法筛选得到的最佳特征波长建立叶绿素检测PLSR模型, 分别记为MC-UVE-PLSR, RF-PLSR, CARS-PLSR。 结果表明, CARS, RF和MC-UVE三种算法的迭代次数(N)、 特征变量数(LV)参数最佳组合分别为: (1)MC-UVE: 迭代次数N=50 特征变量数LV=30; (2)RF: 迭代次数N=500、 特征变量数LV=30; (3)CARS: 迭代次数N=100。 对比在最佳特征波长建立的MC-UVE-PLSR, RF-PLSR, CARS-PLSR叶绿素含量检测, 发现RF-PLSRRR模型的性能最优, R2v为0.786, RMSEV为3.415 mg·L-1; MC-UVE-PLS模型性能次之, R2v为0.696, RMSEV为4.072 mg·L-1; CARS-PLS模型的性能最差, R2v为0.689, RMSEV为4.183 mg·L-1。 以上结果说明: 在筛选马铃薯叶绿素特征波长方面RF算法优于MC-UVE和CARS, 得到的特征波长能够较全面地反映与马铃薯叶绿素相关的物质信息。
马铃薯 叶绿素检测 模型集群 光谱变量筛选 偏最小二乘(PLS) Potato Chlorophyll detection Model population analysis Band selection Partial least square(PLS) 
光谱学与光谱分析
2020, 40(7): 2259
作者单位
摘要
1 中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
2 Center for Precision & Automated Agricultural System, Washington State University, Pullman WA 99350, USA
为了快速感知并分析田间作物生长状况, 采用先进的半导体镀膜工艺光谱成像传感器, 研究了玉米植株冠层叶绿素含量分布式检测方法。 试验采用IMEC 5×5成像传感器, 拍摄47株苗期玉米植株冠层, 获取673~951 nm范围内的25个波长的光谱图像。 实验中, 利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量, 每株玉米冠层叶片设置2~3个采样点, 每点测量3次取平均, 共计242个样本数据。 对光谱图像数据, 经4灰度级标准板提取并校准反射率。 为了实现玉米植株与花盆、 土壤背景的有效分离, 在分析不同对象光谱反射率与图像像素特征的基础上, 提出了一种基于谱图特征组合的植株分割方法, 即基于植被指数的图像初步分割与区域标记计算的冠层精细分割的植株提取算法。 首先, 计算各像素点归一化植被指数(NDVI), 并开展基于NDVI的植株冠层分割方法分割结果优于基于最大类间方差法的全局阈值自适应分割算法。 其次, 采用边缘保持中值滤波算法剔除初步分割后图像中存在的噪声点后, 基于区域标记算法进行精细分割, 获得掩膜并最终得到仅保留玉米植株冠层的光谱图像。 分别采用相关分析法(CA)和随机蛙跳(RF)算法选取反射光谱特征波长, 并构建750~951 nm近红外(NIR)和673~750 nm红色(R)选中波长集合, 遍历NIR和R集合组合计算比值植被指数(RVI), 差值植被指数(DVI), 归一化植被指数(NDVI)和SPAD转换指数(TSPAD)。 然后, 再次采用CA和RF算法筛选植被指数, 利用SPXY算法将样本按照7∶3比例划分为建模集和验证集, 并建立了叶绿素含量指标检测CA+RF-PLSR模型。 结果表明, 其建模集R2C为0.573 9, RMSEC为3.84%, 验证集R2V为0.420 2, RMSEC为2.3%。 利用建模结果对多光谱图像进行处理, 绘制玉米叶片SPAD值伪彩色分布图, 实现叶绿素含量分布可视化。 研究表明采用镀膜型光谱成像数据, 分析对象光谱与图像特征, 探讨玉米冠层叶绿素含量分布检测的可行性, 可为直观监测作物生长动态提供支持。
镀膜型传感器 光谱成像 图像分割 叶绿素含量 玉米植株 Coating sensor Spectral imagery Image segmentation Chlorphyll content Maize plant 
光谱学与光谱分析
2020, 40(7): 2253

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!