作者单位
摘要
北京工业大学 信息学部 微电子学院, 北京 100124
提出了一种低压低功耗有源电感(LVLPAI)。它由新型正跨导器、负跨导器以及电平转换模块构成。其中, 电平转换模块与新型正跨导器的输入端和负跨导器的输出端连接, 同时, 新型正跨导器采用了PMOS晶体管, 并将栅极和衬底短接, 最终使得有源电感可在低压下工作, 且在不同频率下具有低的功耗。基于018 μm RF CMOS工艺进行性能验证, 并与传统AI进行对比。结果表明, LVLPAI和传统AI比较, 在15 GHz、27 GHz、44 GHz这三个频率处分别取得三个电感值3 326 nH、1 403 nH、782 nH的条件下, 前者和后者的工作电压分别为08 V、1 V、12 V和15 V、16 V和17 V, 分别下降了467%、375%、294%; 功耗分别为008 mW、025 mW、053 mW和014 mW、031 mW、062 mW, 分别下降了429%、194%、145%。
有源电感 低压 低功耗 active inductor low voltage low power 
微电子学
2023, 53(3): 419
作者单位
摘要
北京工业大学 信息学部 微电子学院, 北京 100124
提出了一种性能多种重构的高频压控有源电感(HFVCAI)。电路主要由第一回转回路、第二回转回路以及调控支路构成, 且第一回转回路和第二回转回路并联, 调控支路与第一回转回路连接, 两个回转回路均配置了外部调控端。通过协同调节3个外部调控端, 可对HFVCAI的性能进行3种重构: 在高频工作区能够对电感值进行大范围调控, 且同时能保持Q值有较大值; 在不同频率下能够同时保持Q峰值和电感值基本不变; 能够实现在对工作频带大范围调控时, 电感值峰值保持基本不变。结果表明, 在5.10~6.60 GHz高频区, 电感值的调控范围大于27 nH, 且Q值可保持大于10; 在4.72 GHz、5.10 GHz和5.46 GHz高频下, 分别取得了1 063、1 053和 1 033 的Q峰值, 变化率仅为2.8%, 且电感值分别为202 nH、198 nH和191 nH, 变化率仅为 5.4 %; 工作频带能在6.02 ~ 7.67 GHz之间调控, 变化率高达27.4 %, 而电感值峰值在404 ~ 395 nH之间变化, 变化率仅为2.2%。
有源电感 多种重构 独立调控 active inductor multiple reconfigurable independent adjustment 
微电子学
2022, 52(1): 22
作者单位
摘要
北京工业大学 信息学部 微电子学院, 北京 100124
提出了一种采用LC并联谐振电路的新型差分有源电感,实现了宽的工作频带、高的Q值、较大的电感值和可调谐功能。采用无源电感和MOS晶体管可变电容构成LC谐振电路,减小了等效串联电阻和等效并联电容,在增大电感值、Q值的同时,扩大了工作频带。仿真结果表明,在2~7.6 GHz频率范围内,该新型差分有源电感的电感值大于26 nH,Q值大于138;在7.6 GHz高频下,电感值达130 nH,Q值达418,实现了宽工作频带范围内的高Q值和高电感值。与传统差分有源电感和带LC谐振电路的单端有源电感相比,该新型差分有源电感的性能较好。
有源电感 LC并联谐振 宽工作频带 高Q值 active inductor LC parallel resonance wideband high Q value 
微电子学
2021, 51(2): 179
作者单位
摘要
北京工业大学 信息学部,北京 100124
对不添加镇流电阻的非均匀发射极条间距的多发射极条异质结双极晶体管(HBT)的射频功率性能和表面温度分布进行了测量,并与常规采用镇流电阻的多发射极条功率HBT进行了比较。实验结果表明,对具有非均匀发射极条间距的多发射极条HBT,采用US QFI TMS红外测量系统测得的最高表面温度、温度分布均匀性以及采用射频测量系统测得的射频功率增益和功率附加效率,分别低于、好于和高于具有镇流电阻的多发射极条功率HBT的情况。这些结果的取得,得益于采用非均匀发射极条间距改善了多发射极条HBT的热电正反馈和不同发射极条之间的热耦合,以及摆脱了传统HBT加镇流电阻带来的对射频功率性能的负作用。
双极晶体管 射频 热稳定性 功率增益 功率附加效率 多指 bipolar transistor radio frequency(RF) thermal stability power gain power-added-efficiency(PAE) multi-finger 
红外与毫米波学报
2021, 40(3): 329

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!