作者单位
摘要
1 宁波大学 机械工程与力学学院 浙江省零件轧制成形技术研究重点实验室, 浙江宁波352
2 浙江大学 机械工程学院 浙江省先进制造技术重点实验室,浙江杭州31007
针对微操作与微装配任务对多维大范围精密定位运动的需求,采用粘滑驱动原理并结合压电柔顺机构设计二自由度、大行程、无耦合并联定位平台。利用桥式机构对内置压电驱动器进行位移放大,并与复合解耦结构配合构成二维柔顺驱动机构。交叉滚柱导轨则连接移动台与驱动机构,并通过预紧螺钉调整接触摩擦力,进而获得良好的粘滑运动特性。采用有限元法建立定位平台的静力学模型,并对位移放大倍数、应力和固有频率进行仿真分析。最后,搭建实验测试系统验证定位平台的输出性能。实验结果表明:在扫描驱动模式下,驱动电压为150 V时,平台xy向的输出位移分别为63.84 μm和62.61 μm,耦合比为0.52%和0.59%,分辨率为6.5 nm和7.2 nm;在步进驱动模式下,驱动电压为120 V时,平台在xy向的单步位移分别为47.31 μm和47.20 μm,耦合比为0.69%和0.73%,x正向、x反向、y正向和y反向的运动分辨率分别为0.49,0.47,0.47和0.42 μm,最大垂直负载为50 N,设计的压电粘滑定位平台满足所需性能要求。
压电驱动 桥式机构 粘滑运动 定位平台 piezoelectric actuation bridge mechanism stick-slip motion positioning platform 
光学 精密工程
2024, 32(1): 62
作者单位
摘要
1 宁波大学 机械工程与力学学院,浙江 宁波 315211
2 浙江大学 机械工程学院浙江省先进制造技术重点实验室, 浙江 杭州 310027
针对压电微操作器的迟滞非线性补偿问题, 采用Prandtl-Ishlinskii(PI)法建立了描述微操作器迟滞非线性特性的迟滞模型, 并设计其前馈控制器。首先通过将系统逆补偿输出线性化, 设计混合灵敏度H∞控制器, 使系统具有较好的动静态特性。其次搭建了由多自由度微动平台和末端柔性操作臂构成的压电微操作器系统, 并进行一系列测控实验。结果表明,基于PI逆模型的前馈控制可以较好地补偿压电微操作器的迟滞非线性, 在最大输出位移125 μm的情况下, 最大迟滞非线性率由21.7%降低至7.4%。同时混合灵敏度H∞控制能以较小的相对控制误差实现对不同类型和频率的参考轨迹跟踪, 甚至微操作器动力学参数发生变化时, 仍然具有较好的控制效果, 证实了所提出控制器的可行性。
微操作器 压电驱动 H∞控制 迟滞模型 前馈控制 micromanipulator piezoelectric actuation H∞ control hysteresis model feedforward control 
压电与声光
2021, 43(5): 651

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!