作者单位
摘要
1 江苏大学农业工程学院, 食品与生物工程学院, 江苏 镇江 212013
2 江苏大学农业工程学院, 食品与生物工程学院, 江苏 镇江 212013 江苏高校智能农业与农产品加工国际合作联合实验室, 江苏省教育厅, 江苏 镇江 212013
多菌灵(Carbendazim, 甲基-1H-2-苯并咪唑氨基甲酸酯)是一种内吸性广谱杀菌剂, 广泛应用于苹果种植过程中的轮纹病和褐斑防治, 若不合理使用会在苹果中残留危害消费者身体健康。 采用表面增强拉曼光谱免疫分析技术(surface-enhance Raman spectroscopy combined immunoassay, SERSIA), 以SERS高灵敏度和分子“指纹”图谱特性为基础, 结合免疫特异选择性, 实现苹果中多菌灵的微/痕量检测。 制备核-分子-壳“三明治式”结构的Au@M@Ag 纳米SERS材料和结合抗原的SERS免疫探针, 在包被抗体的Fe3O4磁性纳米材料可分离功能下, 实现多菌灵的特异性检测。 采用透射电镜(transmission electron microscope, TEM)、 紫外-可见光谱和拉曼光谱等方法对制备的材料进行表征并优化了实验参数。 研究表明多菌灵浓度与标记分子4-巯基苯甲腈的2 227 cm-1处特征峰强度值在0.5~300 nmol·L-1范围内具有良好的线性关系, 同时该免疫探针信号具有良好的稳定性和重现性。 对不同加标浓度的苹果实际样本进行检测, 得到的平均回收率为95.6%~98.3%, 相对标准偏差(relative standard deviation, RSD)为0.15%~0.99%。 该方法操作简单, 检测灵敏度高、 选择性强、 稳定性好, 为苹果中痕量多菌灵的检测提供了新的方法。
表面增强拉曼光谱 免疫分析技术 多菌灵 苹果 快速检测 Surface enhanced Raman spectroscopy (SERS) Immunoassay Carbendazim Apple Rapid detection 
光谱学与光谱分析
2023, 43(5): 1478
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
人造植物肉在其原料运输、 制糜和包装等加工环节时有发生异物污染事件, 误食异物会严重损害人的身体健康。 常规食品异物检测方法容易检测出如金属、 石头等坚硬、 深色异物, 而软质、 浅色、 透明异物却是食品异物污染事件中的主要来源且是检测的难点。 根据异物和人造肉各自化学组成成分的差异, 提出了一种人造肉中低色度差异物的高光谱成像检测方法, 根据异物与人造肉光谱信息的差异, 建立模式识别模型, 来进行人造肉中低色度差异物的判别, 最后结合数字图像处理技术对异物进行空间分布可视化。 选取了聚碳酸酯(PC)、 涤纶树脂(PET)、 聚氯乙烯(PVC)、 硅胶、 玻璃五种食品生产加工过程中常见的低色度差异物为研究对象, 模拟人造肉压片的工业制作流程, 将异物混入人造肉肉糜中, 制备混有异物的人造肉样品, 分别采集异物和人造肉感兴趣区域(ROI)的反射高光谱数据, 采用SG, SNVT, MSC, VN, 1ST及2ND六种不同的光谱预处理方法对原始光谱数据进行预处理, 然后采用主成分分析法(PCA)对预处理后的光谱数据降维, 采用连续投影算法(SPA)提取人造肉的特征波长。 分别以全波段光谱、 特征波长和主成分变量作为模式识别模型输入变量, 对比LDA, KNN, BP-ANN, LS-SVM四种模式识别模型的准确率, 优选出最佳的定性识别模型, 设置优选模型异物类别输出变量为1、 人造肉类别为0, 生成二值图像, 再结合数字图像处理技术实现人造肉中异物分布可视化, 进而实现人造肉中低色度差异物的识别。 结果表明, 采用SG预处理后的光谱在降噪方面优于其他预处理方式。 SPA法优选了人造肉10个特征波长。 全波段主成分变量结合BP-ANN模型的检测效果最佳, 准确率达98.33%。 验证了高光谱技术应用于人造肉中低色度差异物检测的可行性。
人造肉 低色度差异物 高光谱成像技术 模式识别 分布可视化 Soy protein meat Low chromaticity difference foreign matter Hyperspectral imaging technology Pattern recognition Distribution visualization 
光谱学与光谱分析
2022, 42(4): 1299
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
近红外光谱(NIR)具有快速、 无损、 操作方便的特点, 故广泛用于食品分析。 作为一种间接的分析技术, NIR需要建立光谱与待测浓度之间的统计模型来实现检测。 故模型的维护有助于保证NIR的预测准确性。 在外界条件发生变化的情况下, 诸如样品性状的改变、 仪器对理化指标函数关系的变化、 湿度和温度等环境因素的改变, 会导致相同样品的光谱信号发生偏移, 进而使得原有模型的预测精度下降。 此时, 如果重新建模, 虽然可以解决光谱偏移对建模的影响, 但是重新建模将耗费大量的人力物力。 对此, 模型转移可以在避免重新建模的情况下, 校正光谱的偏移, 进而提高模型预测精度。 通常模型转移算法多用全光谱进行模型转移, 这种方法计算量较大, 且不能找到合适的有化学意义的波段。 故提出一种基于模型转移中的变量选择方法: 向后迭代区间选择法(IIBS), 通过计算主光谱(用于建模的那组光谱)和从光谱(发生偏移, 需要通过模型转移算法将其校正的光谱)中, 变量区间的重要性信息(回归系数(β)、 残差向量(Res)以及变量重要性投影(VIP))。 进而通过计算该区间变量重要性信息的几何平均数, 并以此作为该区间的区间重要性指标。 接着根据区间的重要性, 删除重要性信息较小的变量区间。 然后对主光谱和从光谱重复迭代上述过程: 计算变量的重要性信息, 计算区间的重要性信息, 删除重要性信息较小的区间。 最后, 比较不同的主光谱和从光谱区间组合的验证均方根误差(RMSEV), 选择RMSEV最小的主光谱和从光谱区间作为最优区间。 玉米、 小麦两套NIR数据测试了该算法。 结果显示, 与全波段相比, β, Res以及VIP均可以从主光谱和从光谱中选择较少的, 有化学意义的区间, 提高模型转移的精度。 在比较不同变量重要性向量方面, 基于β的变量选择算法, 模型转移的计算误差较小。
近红外光谱 模型转移 变量选择 回归系数 残差向量 VIP值 Near infrared spectra Calibration transfer Variable selection Regression coefficient Residual error VIP 
光谱学与光谱分析
2021, 41(6): 1789
作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江 212013
2 Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
样本选择是模型转移的重要组成部分, 其目的是在主光谱和从光谱中选择合适的样本, 建立二者的转移模型, 使得从光谱的预测样本能通过转移模型校正成类似于主光谱的样本, 进而用主光谱的模型直接预测其浓度。 目前, 常用的样本选择算法有: Kennard-Stone 法 (KS法), SPXY法和SPXYE法。 根据上述算法的特点, 提出了一种新的样本选择方法: 加权SPXYE法(WSPXYE法), 进而将其用于选择合适的转移集样本。 WSPXYE同样先计算样本间的距离, 其距离有三个部分组成: 光谱(X)之间的归一化距离dxs, 浓度(y)之间的归一化距离dys, 以及校正误差(e)之间的归一化距离des。 其加权代数和dwspxye=αdxs+βdys+(1-α-β)des即为WSPXYE距离。 计算了WSPXYE距离之后, 可以根据其距离选择距离较大的样本作为转移集样本。 WSPXYE是Kennard-Stone法(KS法), SPXY法和SPXYE法的推广, 而KS法(α=1, β=0)、 SPXY法(α=0.5, β=0.5)以及SPXYE法(α=0.333, β=0.333)则是WSPXYE法的特例。 直接校正法(DS)、 有信息成分提取-典型相关分析法(CCA-ICE)作为模型转移算法验证了WSPXYE方法的效果。 结果显示, 与KS法、 SPXY法以及SPXYE法相比, WSPXYE法可以通过调节参数, 选择合适的样本, 获得较低的误差。
样本选择 模型转移 WSPXYE WSPXYE Kennard-Stone Kennard-Stone SPXY SPXY SPXYE SPXYE Sample selection Calibration transfer 
光谱学与光谱分析
2021, 41(3): 984
作者单位
摘要
江苏大学食品与生物工程学院, 农业装备工程学院, 江苏 镇江 212013
豆腐作为我国传统食品, 其生产已有两千多年的生产历史, 但目前市场上的豆腐还是以经验式小作坊生产为主, 难以保证豆腐质量和品质的均一性。 水分和蛋白质含量是影响豆腐品质的重要因素, 然而, 水分与蛋白质的传统检测方法过程繁琐, 耗时、 费力, 无法及时指导生产。 因此, 探索豆腐制备过程中水分和蛋白质分布的快速、 无损、 定量描述方法, 可为精确调控豆腐制备工艺提供科学依据。 应用高光谱成像技术结合化学计量学方法检测豆腐形成过程中豆浆、 热浆、 凝胶、 豆腐四种不同状态下水分与蛋白质含量变化并实现其含量分布可视化。 采集每种状态下120个样品在432~963 nm波段范围内的高光谱图像, 利用ENVI软件选取感兴趣区域并计算样品的平均光谱数据。 采用卷积平滑(savitzky-golay, SG)结合多元散射校正(multiplicative scatter correction, MSC)对原始光谱进行预处理, 消除光谱噪声影响。 用预处理后的光谱数据建立偏最小二乘回归(PLSR)和主成分回归(PCR)定量模型, 比较发现豆浆、 热浆、 凝胶、 豆腐样品的PCR模型对与水分和蛋白质的预测结果均低于PLSR模型。 选用PLSR模型作为最优模型, 采用连续投影算法(SPA)筛选豆浆、 热浆、 凝胶、 豆腐样品的特征波长, 分别选取13, 9, 8和9个特征波长建立基于特征波长下的PLSR模型。 结果表明: 与全波段下的PLSR 模型相比基于特征波长建立的SPA+PLSR模型的预测效果更好, 对水分的预测模型RP达到0.84~0.96, 蛋白质的预测模型达到0.92~0.97。 基于预测效果更好的SPA+PLSR模型计算豆浆、 热浆、 凝胶、 豆腐图像中每个像素点的水分与蛋白质含量, 将样品中的水分与蛋白质分布用不同的颜色直观显示, 实现水分与蛋白质在不同状态下的分布。 验证了高光谱技术对豆腐形成中水分与蛋白质含量检测的可行性, 解决传统检测方法的缺陷, 为豆腐生产的工业化和智能化提供理论依据。
豆腐 高光谱成像技术 分布可视化 水分 蛋白质 Tofu Hyperspectral imaging technique Distribution visualization Water Protein 
光谱学与光谱分析
2020, 40(11): 3549
作者单位
摘要
江苏大学食品与生物工程学院, 江苏 镇江 212013
小麦是制作馒头的主要原料之一, 小麦中水、 蛋白质、 淀粉会因产地以及烘干程度的差异而不同, 进而影响到加工成馒头的品质。 所以实现对小麦产地和烘干程度的快速鉴别就显得尤为重要。 感官评定是鉴别小麦产地和烘干程度常用的方法, 对比感官评定, 光谱分析可以识别样品中的分子结构等信息。 基于此, 尝试利用近红外和中红外光谱融合技术实现对不同产地和不同烘干程度的小麦同时鉴别。 首先选取了两个不同产地的小麦, 再利用微波干燥法对两个不同产地的小麦做烘干预处理, 使烘干的小麦水含量为12%±0.5%, 原麦水含量为18%±0.5%。 分别标记为原麦A, 烘干A, 原麦B, 烘干B, 再将小麦研磨成粉末, 过100目筛网筛选后, 置于自封袋中备用。 随后分别采集四种小麦样品的近红外和中红外光谱信息, 在Matlab 7.10的环境下使用标准正态变量变换(standard normal variable transformation, SNVT)对采集到的原始光谱数据进行预处理, 利用主成分分析对预处理后的数据进行降维处理, 再结合线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)分别建立小麦近红外、 中红外光谱数据识别模型。 另外利用联合区间偏最小二乘法(synergy interval partial least square, SiPLS)筛选出利用标准正态变量变换(SNVT)预处理后的小麦近红外和中红外光谱数据特征光谱区间, 将筛选出的近红外和中红外光谱数据特征光谱区间融合后再结合线性判别分析(LDA)和支持向量机(SVM)建立小麦融合光谱信息的识别模型。 然后比较同种光谱数据下利用线性判别分析(LDA)和支持向量机(SVM)建立的小麦识别模型识别率、 比较同种建模方法下近红外和中红外光谱数据建立小麦识别模型识别率、 比较同种建模方法下光谱数据融合和单一光谱数据建立小麦识别模型识别率。 结果表明, 同种光谱分析方法, 利用SVM建立的四种小麦识别模型识别率高于利用LDA建立的小麦识别模型识别率。 同种建模方法, 近红外光谱数据建立的小麦识别模型识别率优于中红外光谱数据建立的小麦识别模型识别率。 而在同种建模方法下, 利用SiPLS筛选出近红外和中红外光谱数据的特征光谱区间数据融合后建立小麦识别模型识别率最高, 光谱数据融合后结合LDA建立的小麦识别模型校正集识别率为98.75%, 预测集识别率为97.50%; 而将此选择的变量结合SVM建立的小麦识别模型的校正集和预测集识别率都达到100.0%。 对比利用单一光谱数据建立的小麦识别模型识别率, 光谱数据融合之后建立的小麦识别模型识别率得到显著提高, 该研究从纵向和横向上全面地比较了光谱数据建立的小麦模型识别率, 结果可为更准确地运用光谱融合技术建立小麦产地以及烘干程度识别模型提供参考。
小麦 光谱分析技术 联合区间偏最小二乘法 线性判别分析 支持向量机 Wheat Spectral analysis technology Synergy interval partial least square (SiPLS) Linear discriminant analysis (LDA) Support vector machine (SVM) 
光谱学与光谱分析
2019, 39(5): 1445
作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江212013
2 江苏大学现代农业装备与技术重点实验室, 江苏 镇江212013
磷元素(P)亏缺初期, 水果黄瓜植株根部叶片出现小斑点, 其症状的外观特征与健康植株根部叶片老化初期类似, 难以用肉眼或者计算机图像处理技术识别。 本文根据近红外光谱能够反映叶片组织中有机物组分的差异, 运用近红外光谱技术对水果黄瓜植株磷元素亏缺进行了快速诊断研究。 精确控制营养液中磷元素含量, 通过设施栽培方式培养缺磷植株和对照样本。 近红外光谱仪采集了90片叶子的原始光谱(60片作为训练集, 30片作为预测集), 经光谱预处理和窗口宽度优化后均匀划分为27个子区间, 分别提取每个子区间的10个主成分数据作为BP人工神经网络(BP-ANN)的输入变量, 以叶片缺素情况作为输出变量, 建立3层BP-ANN诊断模型。 当主成分因子数为3时, 第7个子区间对应的模型效果最佳, 模型对缺磷叶片和正常叶片的预测准确率均达到100%。 研究表明: 近红外光谱技术结合BP-ANN快速诊断水果黄瓜磷元素亏缺是可行的。
缺素诊断 近红外光谱技术 磷元素 水果黄瓜 BP人工神经网络 Diagnostics of deficiency Near infrared spectroscopy Phosphorus Mini-cucumber plants BP-ANN 
光谱学与光谱分析
2011, 31(12): 3264

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!