陈兴宇 1,2李昊 1,2陈乔雨 1,2徐海升 3[ ... ]殷杰 1,2,*
作者单位
摘要
1 中国地质大学(武汉)珠宝学院,湖北 武汉 430074
2 中国地质大学(武汉)先进制造研究所,湖北 武汉 430074
3 湖北三江航天江北机械工程有限公司,湖北 孝感 432000
4 中国地质大学(武汉)机械与电子信息学院,湖北 武汉 430074
5 鑫精合激光科技有限公司,北京 102200
铜铬锆(CuCrZr)作为沉淀硬化合金,以其良好的耐热性、耐腐蚀性以及优异的力学、电学和热学性能而被广泛应用于航空航天、核能化工等领域。然而,CuCrZr是当前激光增材制造(LAM)难成形材料之一,相关研究报道还很有限。本文综述了近年来激光粉末床熔融(L-PBF)制备CuCrZr合金的研究进展,重点探究了绿激光与近红外激光对成形质量的影响规律,分析了热处理及构建方向与微观组织、力学性能的内在联系,并研究了热处理对于电学、热学性能的强化机制。近红外激光制备样品的致密度波动范围大(95.5%~99.9%),绿激光制备样品的整体致密度较低但波动范围较小(96.5%~98.5%),工艺参数仍有优化空间。合金的微观组织和综合性能都存在各向异性,即沿水平方向的晶粒细小,沿垂直方向的晶粒为柱状晶粒。固溶处理会使合金的熔池边界消失并改变晶粒形态,时效处理导致合金产生沉淀并改变晶粒取向。500 ℃左右处理1~2 h的直接时效处理对力学性能的提升最大,时效处理通过降低位错密度、减少热残余应力和促进沉淀物的形成,显著增强了合金的力学性能。对电学、热学性能提升最大的热处理条件为950~1000 ℃的固溶退火处理1 h+500 ℃左右的时效硬化处理1~3 h,这是因为固溶退火+时效硬化处理降低了位错密度和残余应力,并产生了有益的沉淀物。本文总结了L-PBF制备CuCrZr合金的成形行为、微观组织和综合性能的研究进展,并对其研究前景和发展方向进行了展望。
激光增材制造 铜铬锆合金 成形行为 微观组织 综合性能 
中国激光
2024, 51(4): 0402302
作者单位
摘要
1 五邑大学 智能制造学部, 江门529020
2 五邑大学 应用物理与材料学院, 江门 529020
3 香港科技大学 机械及航空航天系, 香港 999077
为了研究工艺参数对激光选区熔化技术成形的CuCrZr合金微流道表面粗糙度的影响, 采用正交试验法制备了具有微流道的CuCrZr合金试样; 利用3维形貌仪和扫描电子显微镜测试样件内表面的粗糙度和微观形貌, 分析了激光功率、扫描速率、填充距离对微流道悬垂面及侧表面的粗糙度的影响规律和内在机制。结果表明, 扫描速率对于悬垂面和侧表面的粗糙度影响最大, 悬垂面受熔池自身质量影响而出现“挂渣”现象, 而侧表面粗糙度则受马兰戈尼效应的影响较大; 经过优化, 在激光功率380 W、扫描速率520 mm/s、扫描间距0.12 mm的工艺参数下, 可加工获得具有最小侧表面粗糙度(16.91 μm)的微流道样件; 在激光功率320 W、扫描速率560 mm/s、填充距离0.14 mm的工艺参数下, 可加工获得具有悬垂面最小粗糙度(24.86 μm)的微流道样件。该研究从激光工艺窗口的角度为激光选区熔化技术成形表面精度提供了依据。
激光技术 表面粗糙度 工艺参数 铜铬锆合金 laser technique surface roughness process parameter CuCrZr alloy 
激光技术
2023, 47(5): 639
作者单位
摘要
1 暨南大学先进耐磨蚀及功能材料研究院,广东 广州 510630
2 华南师范大学信息光电子科技学院,广东 广州 510006
为获得结构致密的CuCrZr合金部件,通过响应曲面和方差分析相结合的方法,探究选区激光熔化主要成形工艺参数(激光功率、扫描速度、扫描间距和铺粉层厚)对合金化CuCrZr粉末成形致密度的影响规律,并对其显微组织、物相和力学性能展开分析。结果显示:激光功率是最主要的影响因素,增大激光功率可显著提高成形致密度;在铺粉层厚0.02 mm,激光功率170 W,扫描速度300 mm/s,扫描间距0.04 mm的工艺组合下,获得最高致密度为96.8%。在此工艺下成形出的CuCrZr合金试样屈服强度为(176.7±2.1) MPa,抗拉强度为(244.7±1.2) MPa,延伸率为29.4%±0.9%。
选区激光熔化 CuCrZr合金 工艺优化 力学性能 selective laser melting CuCrZr alloy process optimization mechanical properties 
应用激光
2022, 42(3): 43

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!