作者单位
摘要
1 宿迁学院 材料工程系,宿迁 223800
2 南京理工大学 材料科学与工程学院,南京 210094
为克服在大批量合成无机钙钛矿量子点(CsPbBr3)时出现的材料光学性能下降的问题,提出了一种改进的室温溶液工艺,通过加入HBr促进前驱体的分散溶解,同时引入路易斯酸配体部分取代油胺,实现量子点表面的缺陷态有效钝化,合成出高质量的CsPbBr3量子点材料。实验测试结果表明,合成出的CsPbBr3量子点荧光发射峰位于517 nm处,发射峰半高宽仅有17 nm,荧光量子效率高达95%。利用制备出的绿光CsPbBr3量子点和商用红色荧光粉混合,和以GaN为基底的蓝光芯片组装成一个白光LED器件,该器件在20 mA的工作电流下获得流明效率达48.35 lm/W的白光。这种高效白光LED展示出无机钙钛矿量子点在通用照明、背光显示和光通信等领域中具有很大的应用潜力。
钙钛矿量子点 室温溶液法 批量合成 白光LED Perovskite quantum dots Solution-process at room temperature Mass synthesis WLED 
光子学报
2023, 52(11): 1116002
作者单位
摘要
江苏大学 材料科学与工程学院,江苏 镇江 212013
钙钛矿量子点(PQDs)由于具有高量子效率、可调节带隙、高色纯度及低成本等优点,在光电领域具有良好的应用前景。然而,其较差的稳定性阻碍了钙钛矿量子点的应用。本文在室温条件下合成了CsPbxSn1-xBr3/ a-ZrP PQDs,与传统CsPbBr3 PQDs对比,具有更好的光学性能及稳定性。由于a-ZrP对于Pb2+选择吸附性的固有特性以及与Cs+离子交换的能力,促进了量子点在a-ZrP表面的吸附锚定。因此,合成的CsPbxSn1-xBr3/a-ZrP PQDs具有更高的激子结合能和更强的环境稳定性。该复合材料为生产稳定高效的钙钛矿量子点提供了一种可行的方法,并表明CsPbxSn1-xBr3/a-ZrP PQDs是一种高效的下转换荧光材料,可用于高效发光二极管的制备。
钙钛矿 量子点 吸附 掺杂Sn2+ 荧光增强 白光发光二极管(WLED perovskite quantum dots adsorption Sn2+ doped photoluminescence enhanced white light-emitting diodes 
发光学报
2023, 44(8): 1413
作者单位
摘要
1 宿迁学院 材料工程系,江苏 宿迁 223800
2 南京理工大学 材料科学与工程学院,江苏 南京 210094
通过配体辅助溶液相法,在室温下成功合成出一种具有超纯绿光发射的准二维CsPbBr3钙钛矿纳米片。该制备方法可以实现低成本、高质量CsPbBr3纳米片的合成。实验结果表明,合成出的CsPbBr3纳米片荧光发射峰位于526 nm,发射峰半高宽(FWHM)能够达到16 nm,纳米片的荧光量子效率(PLQY)高达87%。将CsPbBr3纳米片应用于背光显示,实现了(0.145,0.793)的绿光坐标,该色坐标覆盖近91% 的Rec.2020绿光色域,色域范围优于目前报道的绿色荧光粉材料。此外,基于上述CsPbBr3荧光纳米片,我们还成功构筑出一种白光LED器件,并测得该器件在20 mA驱动电流下的发光效率为39 lm/W。
CsPbBr3钙钛矿 纳米片 超纯绿光 白光LED CsPbBr3 perovskite nanoplatelets ultrapure green photoluminescence WLED 
发光学报
2023, 44(3): 508
作者单位
摘要
西安航空学院材料工程学院, 陕西 西安 710077
白光LED是指稀土掺杂的荧光粉被蓝光芯片或紫外芯片激发后获得各种室温发白光的器件。 该种光致发光的实现方式是一种新型全固态照明光源, 具有节能、 环保及绿色照明等优点, 被誉为第四代照明光源。 对于现代设施农业, 480~500nm之间的蓝光有一种调整植物节律的作用, 对植物生长是有益的。 蓝光在绿色植物的光合作用和光形态中起着重要的作用, 绿色植物通过叶绿素、 胡萝卜素、 叶黄素和光敏素来捕获太阳光进行光合作用, 适合植物生长的LED灯可提高光合作用效率, 但传统的光源由于光质问题难以调节光波长, 在这种情况下, 需要将太阳光谱成分中380 nm以下的紫外光转换成蓝光, 可提高作物光能利用率。 所以, 高光效、 高热稳定性蓝色荧光粉已成为全光谱照明、 光生态农业等领域的重要材料。 蓝色荧光材料在近紫外(NUV)芯片激发的白光用发光二极管(W-LED)的制造中起重要作用。 采用高温固相法制备YVO4∶Tm3+蓝色荧光粉, 通过X射线衍射仪、 扫描电子显微镜、 荧光光谱仪等检测手段对样品的物相结构、 表观形貌及发光性能进行表征分析。 结果表明: 通过高温固相法1 100 ℃下煅烧2 h可以制备出YVO4∶Tm3+蓝色荧光粉, 粉体呈2 μm左右的球形, 激发峰位于319 nm紫外区域, 发射峰位于479 nm蓝光区域, 样品色坐标位于(0.104 4, 0.122 4), 是一种有望应用于白光LED的蓝色荧光粉。
蓝色荧光粉 白光LED 光致发光 YVO4∶Tm3+ YVO4∶Tm3+ Blue-emitting Phosphor WLED Photoluminescence 
光谱学与光谱分析
2023, 43(2): 623
作者单位
摘要
1 佛山科学技术学院 物理与光电工程学院,粤港澳智能微纳光电技术联合实验室,广东 佛山 528225
2 华南理工大学 发光材料与器件国家重点实验室,广东省光纤激光材料与应用技术重点实验室,广东 广州 510640
报道了一种新型的Mn4+掺杂水合六氟钛酸钙CaTiF6·2H2O∶Mn4+红色荧光粉,详细研究了基质的结构转变和荧光粉的发光性能及高显色指数(显指)暖白光LED应用。CaTiF6·2H2O∶Mn4+在130~200 ℃间脱水转化为CaTiF6∶Mn4+,荧光光谱发生改变,重新吸附水分子可恢复到CaTiF6·2H2O∶Mn4+,发光性能不可逆。重要的是,该荧光粉在较长波626 nm和635 nm处分别发射锐线极强的零声子线(ZPL)和ν6振动峰,色坐标为(0.701,0.299),更接近人眼敏感的红光边界650 nm(色坐标x~0.72,y~0.28),有助于提高暖白光LED的显色指数、拓宽背光源的色域。晶体结构和晶体场强度计算指出,Mn4+在CaTiF6·2H2O∶Mn4+中占据低对称性的格位,所受到的晶体场强度较弱,Mn—F键的共价性较强。另外,通过表面疏水化显著提升了荧光粉耐湿性能,共掺小离子半径的Si4+增强了荧光粉发光热稳定性。以CaTiF6·2H2O∶Mn4+作为红光成分,获得了高显色指数(Ra=90,R9=68)的暖白光LED,在高品质的暖白光照明中具有潜在的应用。
Mn4+掺杂氟化物 CaTiF6·2H2O∶Mn4+ 极强零声子线 高显色指数 暖白光LED Mn4+-doped fluorides CaTiF6·2H2O∶Mn4+ strong zero-phonon line high color rendering index warm WLED 
发光学报
2023, 44(2): 259
杨伟斌 1,2熊飞兵 1,2,*杨寅 1周琼 1[ ... ]罗新 1
作者单位
摘要
1 厦门理工学院 光电与通信工程学院,福建 厦门 361024
2 厦门理工学院 福建省光电技术与器件重点实验室,福建 厦门 361024
采用高温固相法制备一系列新型Sr3-xGa2Ge4O14xSm3+x=0~0.20)及Sr2.88Ga2Ge4O14∶0.06Sm3+,0.06MM=Li+,Na+,K+)荧光粉,通过物相形貌、荧光光谱、热稳定性及CIE色度坐标等分析手段对样品性能进行了详细研究。根据不同掺杂浓度Sr3-xGa2Ge4O14xSm3+的荧光发射谱,发现Sm3+最佳掺杂浓度为x=0.06,其荧光浓度猝灭归因于Sm3+之间的电偶极-电偶极相互作用。研究发现,通过共掺杂MM=Li+,Na+,K+)做电荷补偿离子可以提升Sr3-xGa2Ge4O14xSm3+的发光性能。此外,随着Sm3+掺杂浓度提高,其荧光寿命不断减小。最后探讨了Sr3-xGa2Ge4O14xSm3+的CIE色度坐标和热稳定性,其CIE色度坐标位于橙红光区域,且在423 K的发光强度大概为其室温的95%。研究表明,Sr3-xGa2Ge4O14xSm3+作为新型橙红荧光粉有望应用于白光发光二极管(WLED)。
Sr3Ga2Ge4O14 Sm3+ 电荷补偿剂 光致发光 白光发光二极管(WLED Sr3Ga2Ge4O14 Sm3+ charge compensator photoluminescence white light emitting diode(WLED 
发光学报
2022, 43(6): 879
作者单位
摘要
西安航空学院材料工程学院, 陕西 西安 710077
以Al2(SO4)3·18H2O、 尿素为原料, 采用水热-热解法制备了球形α-Al2O3粉体。 以自制α-Al2O3、 Y2O3及CeO2为原料, 固相法制备了白光LED用Y2.93Al5O12∶0.07Ce3+黄色荧光粉, 通过X射线衍射(XRD)、 扫描电镜(SEM)、 X射线能谱(EDS)及荧光光谱(PL)等对产物的物相、 形貌及光致发光性能进行了表征。 结果表明: 水热-热解法制备出了物相纯净、 分散性良好的球形α-Al2O3粉体, 以该α-Al2O3为原料, 合成出可被460 nm蓝光有效激发, 发射光谱为峰值在550 nm宽带的Y2.93Al5O12∶0.07Ce3+荧光粉, 色坐标为(0.453, 0.531 9), 采用GSAS软件对Y2.93Al5O12∶0.07Ce3+荧光粉的XRD图进行了Rietveld结构精修, 精修图与XRD测试图完全吻合, Y, Al, Ce, O四元素均匀地分布在黄色荧光粉产物中, Y2.93Al5O12∶0.07Ce3+黄色荧光粉的激发光谱由两个部分组成, 在340和460 nm处有两个非常明显的吸收峰, Ce3+的4f能级由于自旋-耦合而劈裂为两个光谱支项2F7/22F5/2, 其中2F5/2为基谱项。 340 nm的激发峰对应于2F5/25D5/2的跃迁, 460 nm的激发峰属于2F7/25D3/2的跃迁, 并且460 nm处的激发强度强于340 nm处激发强度。 以460 nm为监测波长得到的发射光谱, 最强发射峰位于550 nm, Y2.93Al5O12∶0.07Ce3+荧光粉是一种适用于白光LED的高性能黄色荧光粉。
白光LED 荧光粉 光致发光 Y2.93Al5O12∶0.07Ce3+; WLED Phosphor Luminescence properties Y2.93Al5O12∶0.07Ce3+; 
光谱学与光谱分析
2022, 42(2): 381
作者单位
摘要
营口理工学院基础教研部,辽宁 营口 115014
利用一锅非注射合成法制备了Cu掺杂Zn-In-S/ZnS核/壳量子点白光LED(WLED),研究了量子点壳层厚度对其发光性能的影响。对比了几组绿光和橙光量子点比例不同的量子点WLED,测量了它们的国际照明委员会(CIE)色坐标、显色指数(CRI)、相关色温(CCT)和流明效率(LE)等各项性能参数,发现厚壳Cu∶Zn-In-S/ZnS核/壳量子点WLED的流明效率和显色指数均高于薄壳量子点WLED,且随着壳层厚度的增加,量子点的稳定性增强,流明效率增高。
光学器件 量子点 Cu掺杂Zn-In-S/ZnS 白光LED 发光二极管 
激光与光电子学进展
2021, 58(17): 1723003
作者单位
摘要
1 深圳大学 物理与光电工程学院, 广东 深圳 518060
2 东莞理工学院 电子工程与智能化学院, 广东 东莞 523808
采用高温固相法制备了Sr3LiSbO6∶Eu3+(SLSO∶Eu3+)红色荧光粉。系统研究了Eu3+ 浓度对发光强度的影响, 并对样品进行了XRD、荧光光谱(PL)、荧光寿命、热稳定性和色坐标分析。结果表明, 制备的荧光粉Sr3LiSbO6∶Eu3+可被紫外光激发, 并在612 nm处表现出较强的红光发射带。研究了样品的浓度猝灭效应, 样品的最佳掺杂浓度为0.04%, 猝灭主要是因为偶极-偶极相互作用引起的。此外, 还探讨了样品的热稳定性, 在423 K时的发光强度为室温下的43.1%。最后对样品的荧光寿命和CIE进行了测试。以上结果表明制备的荧光粉Sr3LiSbO6∶Eu3+是一种新型LED红色荧光材料。
Eu3+掺杂 荧光粉 白光LED Sr3LiSbO6 Sr3LiSbO6 Eu3+ doped phosphors WLED 
发光学报
2021, 42(4): 455
作者单位
摘要
中国计量大学光学与电子科技学院, 浙江 杭州 310018
LED具有效率高、 体积小、 功耗低、 寿命长等优点, 并且因其具有可轻易实现宽幅光谱调控的特性, 在植物照明领域崭露头角。 植物照明用LED分为两大类, 一类是单色光LED, 另一类是白光LED, 其中植物照明用白光LED可与单色LED混合或者单独使用从而实现植物补光照明。 植物封装用白光LED大部分采用蓝光LED芯片或紫外LED芯片和荧光粉组合实现, 即荧光粉转换型白光LED, 但是光谱集中于可见光偏蓝, 对植物进行光合作用的效率不明显。 植物对于光的吸收不是全波段的而是有选择性的, 基于植物光合作用吸收光谱的特殊性, 将白光LED光谱的显色性能作为评判其光谱是否适合植物生长所需的光质的标准, 其平均显色指数Ra, 特殊显色指数R9(饱和红光), R12(饱和蓝光)被考虑选择为植物照明用白光LED的主要性能评价参数。 为设计出植物进行生长发育所需要的、 性能良好的能应用于植物照明领域的白光LED, 选用常见商用YAGG为绿色颜色转换材料, 选用(Sr, Ca)AlSiN3为红色颜色转换材料, 并用传统高温固相法制备了系列光谱可调的(Sr, Ca)AlSiN3荧光粉, 并进行了光谱性能分析。 通过将搭建好的LED结构模型导入光学仿真软件并分别引入绿色荧光粉颗粒、 红色荧光粉颗粒以及蓝光芯片的特性参数, 在Lighttools中分别建立了单蓝光LED芯片(450 nm)和双蓝光LED芯片(450+470 nm)激发(Sr, Ca)AlSiN3和YAGG荧光粉组合, 实现了白光LED的光学仿真模型, 研究了两种激发模式下仿真得到的不同色温白光LED的光谱功率分布及其显色性能。 用蓝光LED芯片、 (Sr, Ca)AlSiN3以及YAGG荧光粉组合进行了单芯片和双芯片显色性能差异的封装验证。 通过将Sr0.8Ca0.12AlSiN3∶0.08Eu2+和YAGG荧光粉的混合物点涂在双蓝光LED芯片上进行了白光LED的封装制备, 获得了Ra=91.2, R9=96.1, R12=78.9, 光谱辐射光效LER=126 lm·W-1的高效高显色白光LED其含有植物生长所需要的蓝光和红光。
白光LED 植物照明 光谱调控 WLED Plant lighting Spectral regulation R9 R9 R12 R12 
光谱学与光谱分析
2021, 41(4): 1060

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!