Author Affiliations
Abstract
School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
The miniaturized femtosecond laser in near infrared-II region is the core equipment of three-photon microscopy. In this paper, we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy. Based on an all-polarization-maintaining passive mode-locked fiber laser, we shift the center wavelength of the pulses to the 1.7μm band utilizing cascade Raman effect, thereby generate dual-wavelength pulses. To enhance clarity, the two wavelengths are separated through the graded-index multimode fiber. Then we obtain the dual-pulse sequences with 1639.4nm and 1683.7nm wavelengths, 920fs pulse duration, and 23.75MHz pulse repetition rate. The average power of the signal is 53.64mW, corresponding to a single pulse energy of 2.25nJ. This illumination source can be further amplified and compressed for three-photon fluorescence imaging, especially dual-color three-photon fluorescence imaging, making it an ideal option for biomedical applications.
Three-photon fluorescence imaging illumination source dual-wavelength femtosecond pulse cascaded Raman effect graded-index multimode fiber 
Journal of Innovative Optical Health Sciences
2023, 16(5): 2241005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!