暴佳鑫 1,2邓琦琦 1,2刘海龙 1,2李淑静 1,2,*王海 1,2
作者单位
摘要
1 量子光学与光量子器件国家重点实验室 山西大学光电研究所 山西 太原 030006
2 山西大学 极端光学协同创新中心 山西 太原 030006
我们利用周期性极化铌酸锂(PPLN)波导模块演示了从铷原子D1线(795 nm)到光通信L波段(1 621 nm)的频率下转换,并将1 621 nm的转换光子通过15 km光纤进行长距离传输。为了降低由泵浦光引起的宽带自发拉曼散射噪声,我们用两个标准具级连方法将噪声带宽压窄至256 MHz。我们研究了下转换光子远距离传输后的信噪比随脉宽和平均输入光子数的变化关系,表明在低的器件外部转换效率(0.84%)下,当脉宽为30 ns,平均输入光子数为2个时,信噪比为1.5。
频率下转换 自发拉曼散射 信噪比 噪声抑制 difference frequency generation spontaneous Raman scattering signal-to-noise ratio noise suppression 
量子光学学报
2023, 29(2): 020702
马挺 1,2路桥 1赵晨亮 1,2马金栋 1毛庆和 1,2,3,*
作者单位
摘要
1 中国科学院合肥物质科学研究院,安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
本文报道了一种性能稳定的宽带宽调谐差频产生(DFG)中红外光梳设计方案。采用保偏光纤构建光纤链路,以确保其性能稳定;采用自相似光纤放大、光纤孤子压缩及负色散高非线性光纤产生超连续谱等技术,获得了宽带、弱啁啾和窄脉宽基频脉冲;通过严格控制双色基频脉冲的空间重叠、时间同步和偏振特性,仅通过调整硒化镓非线性晶体的相位匹配角和时间同步,无须改变双色基频频率的光谱特性,DFG中红外光梳就可以实现宽光谱带宽和宽光谱调谐范围输出。集成封装仪器化的DFG中红外光梳的光谱覆盖范围为7~13 μm,每个调谐波段的带宽均较宽,9.5 μm波段的带宽达到了2.43 μm;7~13 μm光谱调谐范围内的平均功率都大于240 μW,其中8 μm波段的平均功率达到了470 μW。
激光器 光学频率梳 差频产生 飞秒脉冲 中红外光梳 
中国激光
2023, 50(23): 2301008
陈锴 1,2,3徐德刚 1,2,3,*贺奕焮 4钟凯 1,2,3[ ... ]姚建铨 1,2,3
作者单位
摘要
1 天津大学 精密仪器与光电子工程学院,天津 300072
2 天津大学 光电信息技术教育部重点实验室,天津 300072
3 天津大学 微光机电系统技术教育部重点实验室,天津 300072
4 北京电子工程总体研究所,北京 100854
基于非线性光学频率变换技术的可调谐中红外激光器在光电对抗、气体检测、生物医学等应用领域有着重要价值。近红外激光,尤其是1 μm激光直接泵浦的可调谐中红外激光器具有结构紧凑、调谐范围宽、稳定性高的优势。从非线性光学频率变换技术的核心器件——非线性晶体出发,综述新型非氧化型晶体在可调谐中红外激光产生中的应用现状,介绍了不同晶体的光学特性及实现中红外产生的方法。针对可调谐中红外激光源的调谐范围、单脉冲能量、重复频率等关键参数,分析了不同晶体的中红外产生性能及其适用的中红外产生方法。最后对近红外激光器泵浦的可调谐中红外激光器进行了展望。
中红外激光器 非线性光学频率变换 光学参量放大 光学参量振荡 差频产生 Mid-infrared laser Nonlinear optical frequency conversion Optical parametric amplification Optical parametric oscillation Difference frequency generation 
光子学报
2023, 52(9): 0914001
作者单位
摘要
1 华北水利水电大学电力学院,河南 郑州 450045
2 北京卓立汉光仪器有限公司,北京 101102
3 天津大学精密仪器与光电子工程学院,激光与光电子研究所,天津 300072
本文提出了一种耦合级联光学差频(CCDFG)高效产生太赫兹波的方法。利用耦合光学参量效应产生的双信号光和双闲频光在同一块非周期极化铌酸锂(APPLN)晶体中分别激励一套级联光学差频(CDFG)并产生太赫兹波。频率、偏振方向、传播方向完全相同的太赫兹波将两套CDFG强烈地耦合在一起。CCDFG可以利用两套CDFG共同产生并放大太赫兹波,而产生的太赫兹波又反过来增强CCDFG,进一步驱动CCDFG向更高阶斯托克斯差频扩展,从而大幅提高了太赫兹波能量转换效率。经计算可知,在100 K和300 K温度下,CCDFG产生太赫兹波的能量转换效率分别为37%和4.6%,比相同条件下双信号光和双闲频光激励的两套CDFG的能量转换效率之和分别提高了40%和60%以上。
非线性光学 太赫兹波 耦合级联光学差频 
中国激光
2023, 50(6): 0614001
作者单位
摘要
1 华北水利水电大学电力学院,河南 郑州 450045
2 天津大学精密仪器与光电子工程学院,激光与光电子研究所,天津 300072
提出了一种在晶体极化声子共振区利用级联差频在MgO∶LiNbO3平板波导中产生高频太赫兹波的方法。不同于传统的基于两束近红外光直接差频产生太赫兹波,本文首先利用两束近红外光在周期极化铌酸锂(PPLN)晶体中产生低频太赫兹波和一系列级联光,然后将上述级联光耦合导入平板波导中,通过改变平板波导的尺寸优化各阶差频的相位失配分布,经级联差频高效产生高频太赫兹波。借助MgO∶LiNbO3晶体极化声子共振区巨大的非线性光学系数,以及MgO∶LiNbO3平板波导中被降低的太赫兹波吸收系数,在室温下通过输入两束强度均为100 MW/cm2的差频光,得到了频率为5 THz的高频太赫兹波,太赫兹波强度为88.2396 MW/cm2,能量转换效率为44.12%。本文为产生高频、高功率太赫兹波提供了一种全新方法,可以推动高频太赫兹波在未来高速无线通信领域的应用。
非线性光学 太赫兹波 级联差频 极化声子共振区 平板波导 
中国激光
2022, 49(7): 0714002
作者单位
摘要
浙江大学光电科学与工程学院现代光学仪器国家重点实验室,浙江 杭州 310027

报道了利用脉冲激光差频技术获得波段在3.8 μm纳秒中波红外激光输出的实验研究。分别研制了基于增益调制半导体激光器和“8字腔”锁模掺Yb光纤激光器的1094 nm纳秒脉冲激光种子,经光纤激光放大后获得平均功率为40 W的高光束质量线偏振泵浦光。研制了脉冲同步的1535 nm的信号光种子及输出平均功率为3 W的掺Er光纤激光放大器。将放大后的1535 nm线偏振信号光与1094 nm泵浦光共线入射到作为非线性晶体的周期性畴极化反转掺镁铌酸锂(PPMgLN)晶体中,利用激光差频技术实现了平均功率为5 W的3.8 μm纳秒脉冲激光输出。

激光光学 中波红外激光器 光纤激光器 激光差频 
中国激光
2022, 49(1): 0101017
作者单位
摘要
四川大学 电子信息学院,成都 610065
中红外激光具有多种优势,可以广泛地用到生物、化学、物理等科学研究领域。通常采用直接激射和非线性频率转换这两种方式产生中红外激光,然而,为了实现中红外宽带超短脉冲的发射,非线性频率下转换是现今的唯一方法。脉冲内差频(IP-DFG)是一种简单的非线性频率转换方法,文中对红外IP-DFG的工作做了详细的回顾,从中红外激光晶体和基于IP-DFG产生具有超宽带的中红外超短脉冲的先进工作两个方面做了综述和评论,分别比较了非线性晶体类型、驱动脉冲源、产生超宽带中红外脉冲的光谱范围、转化效率等,并在最后讨论和阐明了IP-DFG领域面临的机遇和挑战。
中红外激光 非线性频率转换 脉冲内差频 非线性晶体类型 驱动脉冲源 mid-infrared laser nonlinear frequency conversion intra-pulse difference frequency generation types of nonlinear crystal the driving pulse 
强激光与粒子束
2021, 33(11): 111004
方迦南 1郭政儒 1闫明 1,2黄坤 1,2,*曾和平 1,2,3
作者单位
摘要
1 华东师范大学 精密光谱科学与技术国家重点实验室,上海 200241
2 华东师范大学重庆研究院,重庆 401120
3 济南量子科学研究院,山东 济南 250101
提出并实验探究了基于同步脉冲诱导的中红外差频产生技术,利用高速光电探测器将泵浦光脉冲转换为超短电信号,使其驱动宽带的幅度调制器,作用于可调谐连续激光器上,从而实现双色脉冲的稳定时域同步。利用了同步脉冲诱导的非线性差频过程,有效降低了光参量下转换的泵浦阈值,能够获得瓦量级的中红外超短脉冲输出,最大泵浦光转换效率达60%,且中心波长在3000~3175 nm范围内可调谐。得益于全保偏光纤架构,平均功率的不稳定度(STD/MEAN)在1 h内低至0.07%,展现了优异的长期稳定性。此外,该方案利用光-电-光高速调制实现高精度脉冲同步,免除了复杂的反馈电路,具有结构简单、即插即用、鲁棒性强的特点,为拓展中红外光源在野外的应用奠定了基础。
中红外激光 差频产生 脉冲同步 光纤激光器 mid-infrared lasers difference-frequency generation pulse synchronization fiber lasers 
红外与激光工程
2021, 50(8): 20210314
作者单位
摘要
1 中国科学院物理研究所 光物理重点实验室,北京 100190
2 上海理工大学 光电信息与计算机工程学院,上海 200093
基于差频产生的中红外飞秒光源具有波长调谐范围宽(6~20 μm)、覆盖范围广(整个“指纹区”)和系统复杂程度低等优势,超快光纤激光器驱动的中红外飞秒光源只有差频部分采用了空间光路,进一步提高了系统的稳定性。文中介绍基于超快光纤激光器驱动的光学差频产生长波中红外飞秒脉冲的技术路线,阐述在差频过程中如何通过非线性光纤光学技术(包括超连续谱产生、孤子自频移和光谱滤波技术)产生合适的信号脉冲,并从理论上详细介绍差频过程中提高中红外脉冲功率的方法。
飞秒中红外光源 光纤激光 差频产生 非线性光纤光学技术 中红外晶体 fs mid-IR light source fiber laser difference-frequency generation nonlinear fiber optics technology mid-infrared crystal 
红外与激光工程
2021, 50(8): 20210368
王庆 1,2,3,*漆磊 1,2,3王润雨 1,2,3李岩 1,2,3
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 信息光子技术工业和信息化部重点实验室,北京 100081
3 光电成像技术与系统教育部重点实验室,北京 100081

基于飞秒激光脉内自差频技术产生中红外波段激光的技术已取得较大的进步,并被广泛地应用在物理学、化学以及生物医学等重要科学领域。对中红外超短激光脉冲的发展与研究背景进行了介绍;阐述了飞秒激光脉内自差频产生中红外激光的基本原理;综述了基于钛宝石激光器、1 μm波段飞秒固体激光器、2 μm波段飞秒固体激光器及光纤激光器作为驱动源并通过脉内自差频技术产生中红外飞秒激光的研究进展,并对不同波段驱动源进行了对比分析;最后对脉内自差频产生中红外飞秒激光的未来发展方向进行了展望。

激光光学 飞秒激光 脉内自差频 中红外激光 宽光谱 
激光与光电子学进展
2021, 58(17): 1700001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!