Author Affiliations
Abstract
1 Department of Physics, California Institute of Technology, Pasadena, USA
2 Department of Electrical and Computer Engineering, Rice University, Houston, USA
3 Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, USA
4 Department of Physics and Astronomy, Rice University, Houston, USA
5 Department of Materials Science and NanoEngineering, Rice University, Houston, USA
Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials. Studies of spin dynamics in the terahertz (THz) frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities. Here, we review THz phenomena related to spin dynamics in rare-earth orthoferrites, a class of materials promising for antiferromagnetic spintronics. We expand this topic into a description of four key elements. (1) We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium. While acoustic magnons are useful indicators of spin reorientation transitions, electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures. (2) We then review the strong laser driving scenario, where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape. Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed. (3) Furthermore, we review a variety of protocols to manipulate coherent THz magnons in time and space, which are useful capabilities for antiferromagnetic spintronic applications. (4) Finally, new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided. By presenting a review on an array of THz spin phenomena occurring in a single class of materials, we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics, which will facilitate the invention of new protocols of active spin control and quantum phase engineering.
terahertz spin dynamics magnetism orthoferrite ultrafast spectroscopy magneto-optics 
Photonics Insights
2023, 1(2): R05
作者单位
摘要
上海电力大学数理学院,上海 201306
钙钛矿稀土正铁氧体RFeO3具有丰富的磁性,这主要源于4f电子层的稀土离子和3d电子层的铁离子之间复杂的相互作用。磁化跃迁作为RFeO3体系中的重要现象,是指体系中的稀土离子磁矩和铁离子磁矩在特定的磁场和温度下发生180°旋转,宏观表现为磁热曲线中磁化强度发生断崖式变化。本文综述了不同化合物RFeO3的两种磁化跃迁现象,第一类磁化跃迁通常具有补偿点,FR与FFe的排列耦合方向不变,第二类磁化跃迁则相反,且两类磁化跃迁出现的温区受外加磁场的调控。
稀土正铁氧体 磁化跃迁 磁各向异性 自旋重取向 earth orthoferrite magnetization jump magnetocrystalline anisotropy spin reorientation 
人工晶体学报
2021, 50(8): 1575
作者单位
摘要
超硬材料国家重点实验室, 吉林大学, 长春130012
本文主要通过高压拉曼光谱研究了正铁氧体SmFeO3 的晶格振动模式在外加压力作用下的行为规律, 高压实验中压力最高为29.7 GPa。本文采用溶胶凝胶法, 制备出具有正交结构, 其空间群为Pnma的SmFeO3。在外加压力作用下, 所有观察到的拉曼振动模式都呈现出宽化趋势。特别是位于621.1 cm-1 的 FeO6 八面体的反弹性振动模式Ag(1)与位于452.7 cm-1的FeO6 八面体的弯曲振动模式B3g(3), 其压力系数出现最大值。与此相反, Sm-O振动模式Ag(7)的压力系数却非常小。这说明外加压力更容易影响到FeO6八面体的晶格变化, 而不是SmO12 十七面体的改变。SmFeO3 的这种高压下晶格振动模式变化行为类似于G型结构的CaSnO3。同时, 文中还给出了所有声子零压模式下的格林爱森参数与体弹模量的比值。这些参数可用于进一步测量单轴或者双轴的应变力, 可深入理解声子频率在张力作用下移动的表现行为。
高压 正铁氧体 拉曼光谱 high-pressure orthoferrite Raman spectroscopy 
光散射学报
2014, 26(2): 148

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!