Author Affiliations
Abstract
1 State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
3 Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China
4 Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300071, China
Flexible devices provide advantages such as conformability, portability, and low cost. Paper-based electronics offers a number of advantages for many applications. It is lightweight, inexpensive, and biodegradable, making it an ideal choice for disposable electronics. In this work, we propose a novel configuration of photodetectors using paper as flexible substrates and amorphous Ga2O3 as the active materials, respectively. The photoresponse characteristics are investigated systematically. A decent responsivity yield and a specific detectivity of up to 66 mA/W and 3×1012 Jones were obtained at a low operating voltage of 10 V. The experiments also demonstrate that neither the twisting nor bending deformation can bring obvious performance degradation to the device. This work presents a candidate strategy for the application of conventional paper substrates to low-cost flexible solar-blind photodetectors, showing the potential of being integrated with other materials to create interactive flexible circuits.
amorphous Ga2O3 flexible photodetector solar-blindness paper 
Chinese Optics Letters
2023, 21(10): 101601
Author Affiliations
Abstract
1 School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China
2 School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215556, China
3 The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230000, China
We have fabricated the AlGaN solar-blind ultraviolet metal–semiconductor–metal (MSM) photodetectors (PDs) with an Al composition of 0.55. The surface roughness and dislocations of the high-Al-content Al0.55Ga0.45N epitaxial layer are analyzed by atomic force microscopy and transmission electron microscopy, respectively. The device exhibits high spectral responsivity and external quantum efficiency due to the photoconductive gain effect. The current reveals a strong dependence on high temperatures in the range of 4–10 V. Moreover, the Poole–Frenkel emission model and changing space charge regions are employed to explain the carrier transport and photoconductive gain mechanisms for the AlGaN PD, respectively.
metal–semiconductor–metal solar blindness photodetector Poole–Frenkel emission photoconductive gain 
Chinese Optics Letters
2021, 19(8): 082504

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!