光学 精密工程, 2020, 28 (1): 50, 网络出版: 2020-03-25   

荧光成像技术无损探测光学元件亚表面缺陷

Nondestructive detection of optics subsurface defects by fluorescence image technique
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
为了建立有效无损的亚表面缺陷探测技术, 本文开展了光学元件亚表面缺陷的荧光成像技术研究, 通过系统优化激发波长、成像光谱、成像光路及探测器等影响探测精度和探测灵敏度的参数, 研制出小口径荧光缺陷检测样机。基于该样机对一系列精抛光熔石英和飞切KDP晶体元件的散射缺陷和荧光缺陷进行了表征, 获得了各类样品亚表面缺陷所占的比重差异很大, 从0.012%到1.1%不等。利用统计学方法分析了亚表面缺陷与损伤阈值的关系, 结果显示, 熔石英亚表面缺陷与损伤阈值相关曲线的R2值为0.907, KDP晶体亚表面缺陷与损伤阈值相关曲线的R2值为0.947, 均属于强相关。该研究结果可评价光学元件的加工质量, 用于指导紫外光学元件加工工艺, 并且由于该探测技术具有无损、快速的特点, 因此可应用于大口径紫外光学元件全口径亚表面缺陷探测, 具有极其重要的工程意义。
Abstract
To establish an effective and nondestructive subsurface defects detection technology, the fluorescence image technique of optics subsurface defect was studied. A small-aperture fluorescent defect-detection prototype was developed by systematically optimizing various parameters such as the excitation wavelength, imaging spectrum, imaging light path, and the detector. Based on the prototype, the surface and subsurface fluorescence defects of the finishing processing of fused silica and diamond fly-cutting processing KDP were characterized. The laser-induced damage threshold was measured by a 351-nm nanosecond pulsed laser. There is a significant difference in the subsurface defects of various samples, ranging from 0.012% to 1.1%. The relationship between the subsurface defects and the damage threshold was analyzed by statistical methods. The results show that the R2 value of the fused silica subsurface defect and the damage threshold curve is 0.907, and the R2 value of the KDP crystal subsurface defect and the damage threshold correlation curve is 0.947; both are strongly related. The results can be used to evaluate the processing quality of the optical components.Because of its nondestructive and short duration characteristics, the technique can be applied to the detection of full-area subsurface defects in large-dimension UV optical components, which makes it vital in engineering.
参考文献

[1] MOSES E I, CAMPBELL J H, STOLZ C J, et al.. The national ignition facility: the world′s largest optics and laser system[J].SPIE, 2003, 5001:1-15.

[2] MOSES E I. National ignition facility: 1.8 MJ, 750 TW ultraviolet laser[J]. SPIE, 2004, 5341: 13-24.

[3] ANDRE M L. Status of the LMJ project[J]. SPIE, 1996, 3047: 38-42.

[4] PENG H S, ZHANG X M, WEI X F, et al.. Design of 60-kJ SG-Ⅲ laser facility and related technology development[J]. SPIE, 2001, 4424: 98-103.

[5] XIAO G Y, FAN D Y, WANG S J, et al.. SG-Ⅱ solid-state laser ICF system[J]. SPIE, 1998, 3492: 890-895.

[6] CAMP D M, KOZLOWSKI M R, SHEEHAN L M, et al.. Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces[R].UCRL-JC-129301, 1997.

[7] GNIN F Y, SALLEO A, PISTOR T V, et al.. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 2001, 18(10): 2607-2616.

[8] YANG M H, QI H J, ZHAO Y N, et al.. Reduction of the 355-nm laser-induced damage initiators by removing the subsurface cracks in fused silica [J]. SPIE, 2011, 8206: 82061C-1-7.

[9] NEAUPORT J, CORMONT P, LAMAIGNRE L, et al.. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communications, 2008, 281(14): 3802-3805.

[10] LIU H J, HUANG J, YE X, et al.. Residual impurities on fused silica surface processed by different technics and their effects on laser induced damage at 355 nm [J]. Optoelectron. Adv. Mater., 2015,17:1406-1410.

[11] LIU H J, YE X, ZHOU X D, et al.. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process [J]. Optical Materials, 2014, 36(5): 855-860.

[12] LIU H J, HUANG J, WANG F R, et al.. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 2013, 21(10): 12204-12217.

[13] NEAUPORT J, AMBARD C, CORMONT P, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456.

[14] SURATWALA T, WONG L, MILLER P, et al.. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52/53/54): 5601-5617.

[15] ZHOU Y Y, FUNKENBUSCH P D, QUESNEL D J, et al.. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 1994, 77(12): 3277-3280.

[16] MENAPACE J A, DAVIS P J, STEELE W A, et al.. MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[R]. UCRL-PROC-217271, 2005.

[17] 刘健, 马占龙, 王君林,等. 光学元件亚表面损伤检测技术研究现状[J]. 激光与光电子学进展, 2011, 48:081204.

    LIU J, MA ZH L, WANG J L, et al.. Research status of subsurface damage detection technology of optical elements[J]. Laser & Optoelectronics Progress, 2011, 48:081204. (in Chinese)

[18] 田爱玲, 党娟娟, 王春慧,等. 光学元件亚表层损伤检测和规律研究[J]. 西安工业大学学报, 2011, 31(4):24-28.

    TIAN A L, DANG J J, WANG CH H, et al.. Optical subsurface damage detection and its analysis[J]. Journal of Xi′an Technological University, 2011, 31(4):24-28. (in Chinese)

[19] FHNLE O, WONS T, KOCH T, et al.. ITIRM as a tool for qualifying polishing processes [J]. Appl. Opt., 2002, 41: 4036-4038.

[20] WUTTIG A.,STEINERT J, DUPARRE A. et al.. Surface roughness and subsurface damage characterization of fused silica substrates[J]. SPIE, 1999, 3739: 369-376.

[21] MA B, SHEN Z X, HE P F, et al.. Detection of subsurface defects of fused silica optics by confocal scattering microscopy [J].Chinese Optics Letters, 2010, 8(3):296-299.

[22] 程健, 王景贺, 张培月, 等. 熔石英元件HF刻蚀的实验研究[J]. 强激光与粒子束, 2017, 29(11): 8-14.

    CHENG J, WANG J H, ZHANG P Y, et al.. Experimental study on HF etching of fused silica[J]. High Power Laser and Particle Beams, 2017, 29(11): 8-14. (in Chinese)

[23] 朱耀楠, 麦绿波, 刘庆明,等. 光学表面激光损伤阈值测试方法第1部分: 1对1测试. GB/T 16601-1996[S]. 国家技术监督局, 1996.

    ZHU Y N, MAI L B, LIU Q M et al.., Test methods for laser induced damage threshold of optical surfaces.Part 1: 1 on 1 test, GB/T 16601-1996[S]. National Technology Supervision Bureau, 1996. (in Chinese)

刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗. 荧光成像技术无损探测光学元件亚表面缺陷[J]. 光学 精密工程, 2020, 28(1): 50. LIU Hong-jie, WANG Feng-rui, GENG Feng, ZHOU Xiao-yan, HUANG Jin, YE Xin, JIANG Xiao-dong, WU Wei-dong, YANG Li-ming. Nondestructive detection of optics subsurface defects by fluorescence image technique[J]. Optics and Precision Engineering, 2020, 28(1): 50.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!