光学 精密工程, 2018, 26 (3): 588, 网络出版: 2018-04-25   

用于曲面光栅刻蚀的工作台轨迹拟合及测试误差分析

Trajectory-fitting and testing error analysis of stage for curved grating etching
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京100049
摘要
制作高闪耀角一致性的曲面闪耀光栅需要工作台能够进行曲线拟合运动, 因此针对曲面闪耀光栅离子束刻蚀机三维工作台的控制算法开展研究。首先, 介绍了曲面闪耀光栅离子束刻蚀机三维工作台的原理方案。接着, 根据曲面刻蚀机的实际使用要求, 给出了工作台运动轨迹的理论计算方法。然后, 提出了一种适用于工作台的圆弧拟合算法, 实现了工作台所需的曲线拟合运动。最后, 在多组工作参数下开展了三维工作台运动轨迹的测量实验, 并将理想轨迹与实测轨迹进行了对比。实验结果表明:工作台进行15个周期的直线拟合运动的累积定位误差小于0.218 mm, 角度误差小于002°; 进行40个周期的曲线拟合运动的累积定位误差小于0.2 mm, 转角误差在-0.2°~0.1°。 此方法实现了三维运动工作台扫描刻蚀与摆动刻蚀的功能, 工作台的稳定性、精度、抗干扰能力满足设备使用要求。
Abstract
To manufacture curved surface gratings with highly consistent blazing angles, the curve-fitting motion of the three-dimensional (3D) stage is essential. Therefore, an investigation of the 3D stage was performed based on a control algorithm for the curved blazed grating etching system. First, a concept of the 3D stage of the curved blazed grating etching system was introduced. Subsequently, according to the actual requirement of the etching machine, the theoretical calculating method for the track of the stage was provided. Then, the arc-fitting algorithm of the stage was proposed and the curve-fitting motion of the stage was performed. Finally, the actual motion tracks of the 3D stage were measured and compared with ideal tracks. Experimental results demonstrate that the cumulative positioning error of the linear fitting motion of the stage after 15 cycles is less than 0.218 mm, and the slope angle error is less than 0.02°; the cumulative positioning error of the curve fitting motion of the stage after 40 cycles is less than 0.2 mm and the rotating angle error is in the range of -0.2°-0.1°. This method has realized the function of scanning etching and oscillating etching of the 3D stage. The stability, accuracy, and interference rejection of the stage satisfy the processing requirements.
参考文献

[1] JOHNSONL F, INGERSOLL K A. Asymmetric triangular grating profiles with 90° groove angles produced by ion-beam erosion[J]. Applied Optics, 1981, 20(17): 2951-2961.

[2] AOYAGI Y, NAMBA S. Blazed ion-etched holographic gratings[J]. Optica Acta, 1976, 23(9): 701-707.

[3] HUTLEY M C. Diffraction Gratings[M]. London: Academic Press, 1982.

[4] OSTERRIED K, HEIDEMANN K F, NELLES B. Groove profile modification of blazed gratings by dip coating with hardenable liquids[J]. Applied Optics, 1998, 37(34): 8002-8007.

[5] DE A MELLO B, DA COSTA I F, LIMA C R A, et al.. Developed profile of holographically exposed photoresist gratings[J]. Applied Optics, 1995, 34(4): 597-603.

[6] LIN H, LI L F. Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask[J]. Applied Optics, 2008, 47(33): 6212-6218.

[7] 吕强, 李文昊, 巴音贺希格, 等. 基于衍射光栅的干涉式精密位移测量系统[J]. 中国光学, 2017, 10(1): 39-50.

    L Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50. (in Chinese)

[8] 李晓莹, 吴焱, 虞益挺, 等. 闪耀角可调微型可编程光栅的优化设计与仿真模拟[J]. 光子学报, 2016, 45(4): 405002.

    LI X Y, WU Y, YU Y T, et al.. Optimization design and numerical simulation of micro programmable gratings with tunable blazed angle[J]. Acta Photonica Sinica, 2016, 45(4): 405002. (in Chinese)

[9] 王保清, 王传珂, 易涛, 等. 错位双光栅色散元件设计及衍射效率研究[J]. 光子学报, 2015, 44(10): 1030003.

    WANG B Q, WANG CH K, YI T, et al.. Investigation into the design and diffraction efficiency of shifted dual transmission grating[J]. Acta Photonica Sinica, 2015, 44(10): 1030003. (in Chinese)

[10] NELLES B, HEIDEMANN K F, KLEEMANN B. Design, manufacturing and testing of gratings for synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468: 260-266.

[11] BRITTEN J A, MOLANDER W A, KOMASHKO A M, et al.. Multilayer dielectric gratings for petawatt-class laser systems[J]. Proceedings of SPIE, 2004, 5273: 1-7.

[12] BAZHANOV Y V, KULAKOVA N A. Analysis of the efficiency of concave diffraction gratings in the scalar approximation[J]. Journal of Optical Technology, 2002, 69(12): 886-888.

[13] WANG L J, ZHANG M, ZHU Y, et al.. Progress on scanning beam interference lithography tool with high environmental robustness for patterning large size grating with nanometre accuracy[C]. Proceedings of the 17th International Conference & Exhibition, EUSPEN, 2017: 173-177.

[14] MOUROULIS P, WILSON D W, MAKER P D, et al.. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31): 7200-7208.

[15] 刘兆武, 李文昊, 王敬开, 等. 纳米精度二维工作台测量镜的面形误差在线检测[J]. 光学 精密工程, 2016, 24(9): 2134-2141.

    LIU ZH W, LI W H, WANG J K, et al.. Online detection of profile deviation for nano precision 2-D stage mirror[J]. Opt. Precision Eng., 2016, 24(9): 2134-2141. (in Chinese)

[16] 崔继文, 刘雪明, 谭久彬. 超精密级二维工作台的自标定[J]. 光学 精密工程, 2012, 20(9): 1960-1966.

    CUI J W, LIU X M, TAN J B. Self-calibration for 2-D ultra-precision stage[J]. Opt. Precision Eng., 2012, 20(9): 1960-1966. (in Chinese)

[17] 张昔峰, 黄强先, 袁钰, 等. 具有角度修正功能的大行程二维纳米工作台[J]. 光学 精密工程, 2013, 21(7): 1811-1817.

    ZHANG X F, HUANG Q X, YUAN Y, et al.. Large stroke 2-DOF nano-positioning stage with angle error correction[J]. Opt. Precision Eng., 2013, 21(7): 1811-1817. (in Chinese)

[18] GAO Z Y, HU J CH, ZHU Y, et al.. A new 6-degree-of-freedom measurement method of X-Y stages based on additional information[J]. Precision Engineering, 2013, 37(3): 606-620.

[19] GLUSS B. A line segment curve-fitting algorithm related to optimal encoding of information[J]. Information and Control, 1962, 5(3): 261-267.

[20] SHEN L X, YANG F, WANG X F, et al.. Functional curve fitting algorithm via multi-heterogeneous data curve[J]. IEEE Access, 2017, 5: 470-479.

[21] LEI N, LI Q, HU Y T, et al.. A digital TDI operation method of array CCD based on curve fitting algorithm[C]. Proceedings of the 3rd International Symposium of Space Optical Instruments and Applications, Springer, 2017, 192: 383-391.

沈晨, 谭鑫, 朱继伟, 张伟, 齐向东. 用于曲面光栅刻蚀的工作台轨迹拟合及测试误差分析[J]. 光学 精密工程, 2018, 26(3): 588. SHEN Chen, TAN Xin, ZHU Ji-wei, ZHANG Wei, QI Xiang-dong. Trajectory-fitting and testing error analysis of stage for curved grating etching[J]. Optics and Precision Engineering, 2018, 26(3): 588.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!