光子学报, 2019, 48 (8): 0827001, 网络出版: 2019-11-28   

用于自然原子共振的应力量子调控自组装量子点单光子源

Strain-field-induced Energy Tuning for Self-assembled Quantum Dots-based Single-photon Sources Interfacing Atomic Transitions
李杨 1,2,*陶略 1,2甘甫烷 1,2张加祥 1,2
作者单位
1 中国科学院上海微系统与信息技术研究所, 上海 200050
2 中国科学院大学, 北京 100049
摘要
上海市青年科技启明星计划(No.19QA1410600),上海市优秀学术带头人计划(No. 19XD1404600),中科院计划(No.Y82BRA1001)
Abstract
In order to interface the self-assembled quantum dot light emitters and natural atoms towards quantum memory application, we designed and fabricated strain-field-induced energy-tunable single-photon sources by integrating quantum dots-containing nanimembrane onto a piezoelectric autcuator. A broad energy tuning range has been achieved for both visible GaAs/AlGaAs quantum dots (9.1 meV) and near infrared InGaAs/GaAs quantum dots (4.2 meV). Meanwhile, with this strain tuning technique, the exciton emission energy of GaAs/AlGaAs quantum dots and InGaAs/GaAs quantum dots can be tuned to be in resonance with the D2 absorption lines of rubidium 87 (780 nm) and the 4I9/2→4F3/2 transition of neodymium ions in solid-state YVO4 (879.7 nm) respectively. This result provides a powerful tuning technique for realizing compact quantum memories based on semiconductor quantum dots and natural atom ensembles.
参考文献

[1] DUAN Lu-ming, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics [J]. Nature, 2001, 414(6862): 413-418

[2] TANG Jian-shun, ZHOU Zong-quan, WANG Yi-tao, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6: 8652.

[3] KASTNER M A. Artificial Atoms[J].Physics Today, 1993, 46(1): 24-31.

[4] SILVERSTONE J W, BONNEAU D, O'BRIEN J L, et al. Silicon quantum photonics [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 390-402.

[5] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

[6] BENSON O, SANTORI C, PELTON M, et al. Regulated and entangled photons from a single quantum Dot[J]. Physical Review Letters, 2000, 84(11): 2513-2516.

[7] INTALLURA P M, WARD M B, KARIMOV O Z, et al. Quantum key distribution using a triggered quantum dot source emitting near 1.3μm[J]. Applied Physics Letters, 2007, 91(16): 161103.

[8] FATTAL D, DIAMANTI E, INOUE K, et al. Quantum teleportation with a quantum dot single photon source[J]. Physical Review Letters, 2004, 92(3): 037904.

[9] LOREDO J C, BROOME M A, HILAIRE P, et al. Boson sampling with single-photon fock states from a bright solid-state source[J]. Physical Review Letters, 2017, 118(13): 130503.

[10] WANG Hui, HE Yu, LI Yu-huai, et al. High-efficiency multiphoton boson sampling[J]. Nature Photonics, 2017, 11(6): 361-365.

[11] SINGH R, BESTER G. Nanowire quantum dots as an ideal source of entangled photon pairs[J]. Physical Review Letters, 2009, 103(6): 063601.

[12] DUPERTUIS M A, KARLSSON K F, OBERLI D Y, et al. Symmetries and the polarized optical spectra of exciton complexes in quantum dots[J]. Physical Review Letters, 2011, 107(12): 127403.

[13] GAMMON D, SNOW E S, SHANABROOK B V, et al. Fine structure splitting in the optical spectra of single GaAs quantum dots[J]. Physical Review Letters, 1996, 76(16): 3005-3008.

[14] ZHANG Jia-xiang, DING Fei, ZALLO E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode[J]. Nano Letters, 2013, 13(12): 5808-5813.

[15] PATEL R B, BENNETT A J, FARRER I, et al. Two-photon interference of the emission from electrically tunable remote quantum dots[J]. Nature Photonics, 2010, 4(9): 632-635.

[16] AKOPIAN N, WANG Li-juan, RASTELLI A, et al. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot[J]. Nature Photonics, 2011, 5(4): 230-233.

[17] HESHAMI K, ENGLAND D G, HUMPHREYS P C, et al. Quantum memories: emerging applications and recent advances[J]. Journal of Modern Optics, 2016, 63(20): 2005-2028.

[18] AFZELIUS M, SIMON C, DE RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review A, 2009, 79(5).

[19] ALONSO-GONZLEZ P, MARTN-SNCHEZ J, GONZLEZ Y, et al. Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes[J]. Crystal Growth & Design, 2009, 9(5): 2525-2528

[20] BASKARAN A, SMEREKA P. Mechanisms of Stranski-Krastanov growth [J]. Journal of Applied Physics, 2012, 111(4): 044321.

[21] DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits[J]. Laser & Photonics Reviews, 2016, 10(6): 870-894.

[22] TSAU C H, SPEARING S M, SCHMIDT M A. Fabrication of wafer-level thermocompression bonds[J]. Journal of Microelectromechanical Systems, 2002, 11(6): 641-647.

[23] DING Fei, SINGH R, PLUMHOF J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress[J]. Physical Review Letters, 2010, 104(6): 067405.

[24] KUKLEWICZ C E, MALEIN R N, PETROFF P M, et al. Electro-elastic tuning of single particles in individual self-assembled quantum dots[J]. Nano Letters, 2012, 12(7): 3761-3765.

[25] ATKINSON P, ZALLO E, SCHMIDT O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes[J]. Journal of Applied Physics, 2012, 112(5): 054303.

[26] ADACHI S. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications[J]. Journal of Applied Physics, 1985, 58(3): R1-R29.

[27] TROTTA R, ZALLO E, ORTIX C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry[J]. Physical Review Letters, 2012, 109(14): 147401.

[28] PLUMHOF J D, KR PEK V, DING Fei, et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1-xAs and InxGa1-xAs/GaAs quantum dots[J]. Physical Review B, 2011, 83(12): 121302.

[29] RIVOIRE K, BUCKLEY S, MAJUMDAR A, et al. Fast quantum dot single photon source triggered at telecommunications wavelength[J]. Applied Physics Letters, 2011, 98(8): 083105.

[30] CHEN Yan, ZHANG Jia-xiang, ZOPF M, et al. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots[J]. Nature Communications, 2016, 7: 10387.

[31] TROTTA R, ATKINSON P, PLUMHOF J D, et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators[J]. Advanced Materials, 2012, 24(20): 2668-2672.

李杨, 陶略, 甘甫烷, 张加祥. 用于自然原子共振的应力量子调控自组装量子点单光子源[J]. 光子学报, 2019, 48(8): 0827001. LI Yang, TAO Lüe, GAN Fu-wan, ZHANG Jia-xiang. Strain-field-induced Energy Tuning for Self-assembled Quantum Dots-based Single-photon Sources Interfacing Atomic Transitions[J]. ACTA PHOTONICA SINICA, 2019, 48(8): 0827001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!