强激光与粒子束, 2017, 29 (10): 104103, 网络出版: 2017-10-30  

微剪切应力传感器的加工工艺

Fabrication process of micro shear stress sensors
作者单位
1 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
2 西南科技大学 信息工程学院, 四川 绵阳 621010
3 中国空气动力研究与发展中心, 四川 绵阳 621000
摘要
提出了一种感测单元不直接接触流场的微剪切应力传感器结构,详细阐述了其感测单元MEMS制作工艺。采用热氧化硅掩膜方法解决了硅深刻蚀的选择比问题;优化后的硅深刻蚀工艺参数:刻蚀功率1600 W、低频(LF)功率100 W,SF6流量360 cm3/min,C4F8流量300 cm3/min,O2流量300 cm3/min。采用Cr/Au掩膜,30 ℃恒温低浓度HF溶液解决了玻璃浅槽腐蚀深度控制问题;喷淋腐蚀和基片旋转等措施提高了玻璃浅槽腐蚀表面质量。采用上述MEMS工艺制作了微剪切应力传感器样品,样品测试结果表明:弹性悬梁长度和宽度误差均在2 μm以内、玻璃浅槽深度误差在0.03 μm以内、静态电容误差在0.2 pF以内,满足了设计要求。
Abstract
The research and testing technique of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the micro shear stress sensor has the advantages of small size, high sensitivity, good stability, and good dynamic response. The micro shear stress sensor can be integrated with other flow field sensors whose process is compatible with that of the micro shear stress sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enables large area and accurate measurement for the near-wall flow. A micro shear stress sensor structure is proposed, whose sensing element does not directly contact with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon deep reactive ion etching(DRIE). The optimized process parameters of DRIE are etching power 1600 W/LF power 100 W, SF6 flux 360 cm3/min, C4F8 flux 300 cm3/min, O2 flux 300 cm3/min. With Cr/Au mask, etching depth of glass shallow groove can be controlled at 30 ℃ and low concentration HF solution; spray etching and wafer rotating improve the corrosion surface quality of glass shallow groove. The micro shear stress sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 003 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.
参考文献

[1] 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60(12): 1095-1103. (Ye Youda. Advances and prospects in hypersonic aerodynamics. Chin Sci Bull, 2015, 60(12): 1095-1103)

[2] Silvester T B, Morgan R G. Skin-friction measurements and flow establishment within a long duct at superorbital speeds[J]. AIAA Journal, 2015 , 46(2) : 527-536.

[3] 雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 中国测试, 2016, 42(7): 1-8. (Lei Qiang, Gao Yang, Wang Xiong. The development progress of MEMS wall shear stress sensors. China Measurement & Test, 2016, 42(7): 1-8)

[4] Smith T B, Schetz J A, Bui T.Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests[R]. AIAA-2002-3134.

[5] 李鹏. 全局表面摩擦应力直接测量技术研究[D]. 南京: 南京航空航天大学, 2012. (Li Peng. Studies of direct measurement techniques about global skin friction. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012)

[6] 吕治国, 李国君, 赵荣娟, 等. 激波风洞高超声速摩阻直接测量技术研究[J]. 实验流体力学, 2013, 27(12): 81-85. (Lu Zhiguo, Li Guojun, Zhao Rongjuan, et al. Direct measurement of skin friction at hypersonic shock tunnel. Journal of Experiments in Fluid Mechanics, 2013, 27(12): 81-85)

[7] 马洪强, 高贺, 毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(8): 83-88. (Ma Hongqiang, Gao He, Bi Zhixian. Direct measurement of skin friction for hypersonic flight vehicle. Journal of Experiments in Fluid Mechanics, 2011, 25(8): 83-88)

[8] 梁锦敏, 李建强, 蒋卫民, 等. MEMS传感器测量平板表面摩擦应力高速风洞试验[J]. 实验流体力学, 2013, 27(2): 1-14. (Liang Jinmin, Li Jianqiang, Jiang Weimin, et al. Skin friction measurement of a flat plate in high speed wind tunnel using MEMS sensors. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 1-14)

[9] Ng K, Shajii J, Schmidt M A. A liquid shear-stress sensor using wafer-bonding technology[J]. J MEMS, 1992, 1: 89-94.

[10] Chandrasekharan V, Sells J, Arnold D P, et al. Characterization of a MEMS based floating element shear stress sensor[R]. AIAA-2009-316.

[11] Meloy J, Griffin J, Sells J et al. Experimental verification of a MEMS based skin friction sensor for quantitative wall shear stress measurement[R]. AIAA-2011-3995.

[12] Jiang Z, Farmer K R, Modi V. A MEMS device for measurement of skin friction with capacitive sensing[C]//Microelectromechanical Systems Conference 2001.

[13] McCarthy M, Frechette L G, Modi V, et al. Initial development of a MEMS wall shear stress sensor for propulsion applications[J]. Pure & Applied Chemistry, 2011, 76(4): 723-752.

[14] Tiliakos N, Papadopoulos G, Grady A O, et al. Preliminary testing of a MEMS based shear stress sensor for high speed flow application[R]. AIAA-2008-3948.

[15] 杜林, 蒲石, 史永贵, 等. 深刻蚀方法对硅基SIWF通孔显微结构的影响[J]. 西安电子科技大学学报, 2015(4): 307-312. (Du Lin, Pu Shi, Shi Yonggui, et al. Effects of deep etching methods on the microstructure of the etched vias of the silicon-based SIWF. Journal of Xidian University, 2015(4): 307-312)

[16] 蔡长龙, 马睿, 刘卫国, 等. 硅深刻蚀中掩蔽层材料刻蚀选择比的研究[J]. 半导体光电, 2009(2): 307-312. (Cai Changlong, Ma Rui, Liu Weiguo, et al. Study on etch selectivity ratio of masking materials in silicon deep etching. Semiconductor Optoelectronics, 2009(2): 307-312)

袁明权, 雷强, 王雄. 微剪切应力传感器的加工工艺[J]. 强激光与粒子束, 2017, 29(10): 104103. Yuan Mingquan, Lei Qiang, Wang Xiong. Fabrication process of micro shear stress sensors[J]. High Power Laser and Particle Beams, 2017, 29(10): 104103.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!