大气与环境光学学报, 2015, 10 (2): 102, 网络出版: 2015-04-14   

大气环境NO3自由基探测技术研究进展

Progress of Measurement of Atmospheric NO3 Radicals
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
摘要
相对于OH自由基是白天大气化学的驱动力,NO3 自由基则是夜间大气中重要的氧化剂,NO3 自由基浓度的 准确测定对夜间大气化学的研究具有重要意义。然而由于大气中NO3 自由基寿命短、浓度低(几百ppt),使 得对其测量具有挑战性。上世纪八、九十年代,主要采用差分光学吸收光谱(DOAS)技术和基质隔离电子顺磁共 振光谱(MI-ESR)技术对NO3 自由基进行测量。随着科学技术的快速发展,本世纪初逐渐发展出腔衰荡光 谱(CRDS)技术、腔增强吸收光谱(CEAS)技术、激光诱导荧光光谱(LIF)技术和化学电离质谱(CIMS)技术来 探测NO3 自由基。综述了国内外大气NO3 自由基探测技术的研究现状和发展趋势,对各种方法的 原理、优缺点及应用进行了较为详细的介绍,并总结了其在大型外场观测中测量NO3 自由基所取得的研究进展。
Abstract
The oxidizability of NO3 radical in the night is comparable with that of diurnal OH radical. Given the importance of NO3 radical in the nocturnal chemical process, accurate measurement of its concentration in the atmosphere has become an essential topic in current research. NO3 radical has the short lifetime and low concentration (approximately several hundred ppt), which brings a challenge to detect NO3 radical. In the 1980s and 1990s, differential optical absorption spectroscopy (DOAS) and matrix isolation electron spin resonance (MI-ESR) are mainly applied to detect NO3 radical. With the rapid development of technology, cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), laser induced fluorescence (LIF) and chemical ionization mass spectrometry (CIMS) are gradually developed to detect NO3 radical at the beginning of this century. The detection processes of NO3 radical are reviewed, the principles of several methods, the advantage and disadvantage of them are introduced in brief. In addition, the process of field observations are outlined.
参考文献

[1] Brown S S, Stutzb J. Nighttime radical observations and chemistry[J]. Chem. Soc. Rev., 2012, 41(19): 6405-6447.

[2] Vrekoussis M, Kanakidou M, Mihalopoulos N, et al. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign[J]. Atmos. Chem. Phys., 2004, 4: 169-182.

[3] Wayne R P, Barnes I, Biggs P, et al. The nitrate radical: Physics, chemistry and the atmosphere[J]. Atmos. Environ., 1991, 25(1): 1-203.

[4] Stutz J, Alicke B, Ackermann R, et al. Vertical profiles of NO3, N2 O5, O3, and NOx in the nocturnal boundary layer: Observations during the Texas air quality study 2000[J]. J. Geophys. Res., 2004, 109(D16): D12306.

[5] Geyer A, Alicke B, Mihelcic D, et al. Comparison of tropospheric NO3 radical measurements by differential optical absorption spectroscopy and matrix isolation electron spin resonance[J]. J. Geophys. Res.-Atmos., 1999, 104(D21): 26097-26105.

[6] Winer M, Atkinson R, Pitts J N. Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic compounds[J]. Science, 1984, 224: 156-159.

[7] Atkinson R. Kinetic sand mechanisms of the gas-phase reactions of the NO3 radical with organic compounds[J]. J. Phys. Chem. Ref. Data, 1991, 20(3): 459-507.

[8] Andreae M O, Raemdonck H. Dimethyl sulphide in the surface ocean and the marine atmosphere: a global view[J]. Science, 1983, 221(4612): 744-747.

[9] Geyer A, Alicke B, Konrad S, et al. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin[J]. J. Geophys. Res., 2001, 106(D8): 8013-8025.

[10] Platt U, Alicke B, Dubois R, et al. Free radicals and fast photochemistry during BERLIOZ[J]. J. Atmos. Chem., 2002, 42(1): 359-394.

[11] Allan B J, Carslaw N, Coe H, et al. Observations of the nitrate radical in the marine boundary layer[J]. J. Atmos. Chem., 1999, 33(2): 129-154.

[12] Brasseur G P, Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere[M]. Berlin: Springer, 2005.

[13] Keys J G, Gardiner B G. NO2 overnight decay and layer height at halley bay, antarctca[J]. Geophys. Res. Lett, 1991, 18(4): 665-668.

[14] Platt U, Perner D, Winer A M, et al. Detection of NO3 in the polluted troposphere by differential optical absorption[J]. Geophys. Res. Lett., 1980, 7(1): 89-92.

[15] Slusher D L, Huey L G, Tanner D J, et al. A thermal dissociation-chemical ionization mass spectrometry(TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide[J]. J. Geophys. Res, 2004, 109: D19315.

[16] Wood E C, Bertram T H, Wooldridge P J, et al. Measurements of N2 O5, NO2, and O3 east of the San Francisco Bay[J]. Environ. Sci. Technol., 2005, 5(2): 483-491.

[17] Wagner N L, Dub’e W P, Washenfelder R A, et al. Diode laser-based cavity ring-down instrument for NO3, N2 O5, NO, NO2 and O3 from aircraft[J]. Atmos. Meas. Tech., 2011, 4(6): 1227-1240.

[18] Atkinson R, Winer A M, PittsJ N. Estimation of nighttime N2 O5 concentrations from ambient NO2 and NO3 radical concentrations and the role of N2 O5 in nighttime chemistry[J]. Atmos. Environ, 1986, 20(2): 331-339.

[19] Langridge J M, Ball S M, Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Rev. Sci. Instrum., 2008, 79(12): 123110.

[20] Bitter M, Ball1 S M, Povey I M, et al. A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases[J]. Atmos. Chem. Phys., 2005, 5(9): 2547-2560.

[21] Wu T, Coeur-Tourneur C, Dhont G, et al. Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications[J]. J. Quant. Spectrosc. Rad. Trans., 2014, 133: 199-205.

[22] Meinen J, Thieser J, Platt U, et al. Technical note: usinga high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS[J]. Atmos. Chem. Phys., 2010, 10(8): 3901-3914.

[23] Schuster G, Labazan I, Crowley J N. A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2 O5[J]. Atmos. Meas. Tech., 2009, 2(1): 1-13.

[24] Geyer A, Ackermann R, Dubois R, et al. Long-term observation of nitrate radicals in the continental boundary layer near Berlin[J]. Atmos. Environ., 2001, 35(21): 3619-3631.

[25] Mihelcic D, Volzthomas A, Patz H W, et al.Numerical-analysis of ESR-spectra from atmospheric samples[J]. J. Atmos. Chem., 1990, 11(3): 271-297.

[26] Odame-Ankrah C A, Osthoff H D. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2 O5 with automated zeroing and calibration[J]. Appl. Spectrosc., 2011, 65(11): 1260-1268.

[27] Matsumoto J, Kosugi N, Imai H, et al. Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique[J]. Rev. Sci.Instrum., 2005, 76(6): 064101-064101-11.

[28] Li S W, Liu W Q, Xie P H, et al. Observation of the nighttime nitrate radical in Hefei, China[J]. J. Environ. Sci., 2008, 20(1): 45-49.

[29] Wang S S, Shi C Z, Zhou B, et al. Observation of NO3 radicals over Shanghai, China[J]. J. Atmos. Environ., 2013, 70: 401-409.

[30] Wang X, Wang T, Yan C, et al. Large daytime signals of N2 O5 and NO3 inferred at 62 amu in aTD-CIMS: chemical interference or a real atmospheric phenomenon [J]. Atmos. Meas. Tech., 2014, 7: 1-12.

[31] Vrekoussis M, Mihalopoulos N, Gerasopoulos E, et al. Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean[J]. Atmos. Chem. Phys., 2007, 7(2): 315-327.

[32] Asaf D, Pedersen D, Matveev V, et al. Long-term measurements of NO3 radical at a semiarid urban site: 1. extreme concentration events and their oxidation capacity[J]. Environ. Sci. Technol., 2009, 43(24): 9117-9123.

[33] Platt U. Spectroscopic measurement of free-radicals(OH, NO3 ) in the atmosphere[J]. Fresenius’ J. Anal. Chem, 1991, 340(10): 633-637.

[34] Platt U, Janssen C. Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere[C]. Faraday Discuss., 1995, 100: 175-198.

[35] Smith J P, Solomon S. Atmospheric NO3.3.sunrise disappearance and the stratospheric profile[J]. J. Geophys. Res.,[Atmos.], 1990, 95(D9): 13819-13827.

[36] Aliwell S R, Jones R L. Measurements of tropospheric NO3 at midlatitude[J]. J. Geophys. Res.,[Atmos.], 1998, 103(D5): 5719-5727.

[37] Coe H, Allan B J, Plane J M C. Retrieval of vertical profiles of NO3 from zenith sky measurements using an optimal estimation method[J]. J. Geophys. Res.,[Atmos.], 2002, 107(D21): 4587.

[38] Friedeburg C, Wagner T, Geyer A, et al. Derivation of tropospheric NO3 profiles using off-axis differential optical absorption spectroscopy measurements during sunrise and comparison with simulations[J]. J. Geophys. Res.,[Atmos.], 2002, 107(D13): 4168.

[39] Smith J P, Solomon S, Sanders R W,et al. Atmospheric NO3 : 4.vertical profiles at middle and polar latitudes at sunrise[J]. J. Geophys. Res., 1993, 98(D5): 8983-8989.

[40] Burrows J P, Tyndall G S, Moortgat G K, et al. Absorption spectrum of NO3 and kinetics of the reactions of NO3 with NO2, Cl, and several stable atmospheric species at 298 K[J]. J. Phys.Chem., 1985, 89(22): 4848-4856.

[41] Wagner T, Otten C, Pfeilsticker K, et al. DOAS moonlight observation of atmospheric NO3 in the Arctic winter[J]. Geophys. Res. Lett., 2000, 27(21): 3441-3444.

[42] Norton R B, Noxon J F, et al. Dependence of stratospheric NO3 upon latitude and season[J]. J. Geophys. Res., 1986, 91(4): 5323-5330.

[43] 石鹏, 谢品华, 李 昂, 等. 基于直射月光的差分吸收光谱技术测量大气NO3自由基[J]. 光学学报, 2010, 30(12): 3643-3648.

    Shi Peng, Xie Pinhua, Li Ang, et al. Measurement of nitrate radical in the atmosphere by direct moonlight passive differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2010, 30(12): 3643-3648(in Chinese).

[44] Mihelcic D, Klemp D, Musgen P, et al. Simultaneous measurements of peroxy and nitrateradicals at Schauinsland[J]. J. Atmos. Chem., 1993, 16(4): 313-335.

[45] Hu J H, Abbatt J P D. Reaction probabilities for N2 O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature[J]. J. Phys. Chem. A, 1997, 101(5): 871-878.

[46] Thornton J A, Braban C F, Abbatt J P D. N2 O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size[J]. Phys. Chem. Chem. Phys., 2003, 5(20): 4593-4603.

[47] Thornton J A, Abbat J P D. N2 O5 reaction on submicron sea salt aerosol: Kinetics, products, and the effect of surface active organics[J]. J. Phys. Chem. A, 2005, 109(44): 10004-10012.

[48] Chang W L, Bhave P V, Brown S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2 O5 : A review[J]. Aerosol. Sci. Tech., 2011, 45(6): 665-695.

[49] Wood E C, Wooldridge P J, Freese J H, et al. Prototype for in situ detection of atmospheric NO3 and N2 O5 via laser-induced fluorescence[J]. Environ. Sci. Technol, 2003, 37(24): 5732-5738.

[50] Matsumoto J, Imai H, Kosugi N, et al. In situ measurementof N2 O5 in the urban atmosphere by thermal decomposition/laser-induced fluorescence technique[J]. Atmos. Environ., 2005, 39(36): 6802-6811.

[51] Matsumoto J, Imagawa K, Imai H, et al. Nocturnal sink of NOx via NO3 and N2 O5 in the outflowfrom a source area in Japan[J]. Atmos. Environ., 2006, 40(33): 6294-6302.

[52] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Rev. Sci. Instrum., 1998, 69(11): 3763-3769.

[53] Ball S M, Langridge J M, Jones R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chem. Phys. Lett., 2004, 398(1): 68-74.

[54] Venables D S, Gherman T, Orphal J, et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity enhanced absorption spectroscopy[J]. Environ. Sci. Technol., 2006, 40(21): 6758-6763.

[55] Kennedy O J, Ouyang B, Langridge J M, et al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3,N2 O5 and NO2[J]. Atmos. Meas. Tech., 2011, 4: 1759-1776.

[56] Varma R M, Venables D S, Ruth A A, et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction[J]. Appl. Opt., 2009, 48(4): B150-B171.

[57] King M D, Dick E M, Simpson W R. A new method for the atmospheric detection of the nitrate radical (NO3 )[J]. Atmos. Environ., 2000, 34(5): 685-688.

[58] Brown S S, Stark H, Ciciora S J, et al. In-situ measurement of atmospheric NO3 and N2 O5 via cavity ring-down spectroscopy[J]. Geophys. Res. Lett., 2001, 28(17): 3227-3230.

[59] Simpson W R. Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2 O5 )[J]. Rev. Sci. Instrum., 2003, 74(7): 3442-3452.

[60] 胡仁志, 王 丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气NO3 自由基[J]. 物理学报, 2014, 63(11): 110707.

    Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring down spectroscopy for atmospheric NO3 radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707(in Chinese).

[61] Dub’e W P, Brown S S, Osthoff H D, et al. Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2 O5 via cavity ring-down spectroscopy[J]. Rev. Sci. Instrum., 2006, 77(3): 034101.

[62] Fuchs H, Dub’e W P, Ciciora S J, et al. Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2 O5 andNO2, via pulsed cavity ring-down spectroscopy[J]. Anal. Chem., 2008, 80(15): 6010-6017.

[63] Brown S S, Stark H, Ryerson T B, et al. Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2 O5, NO2, NO, and O3[J]. J. Geophys. Res., 2003b, 108(D9): 4299.

[64] Brown S S, Dibb J E, Stark H, et al. Nighttime removal of NOx in the summer marine boundary layer[J]. Geophys. Res. Lett., 2004, 31(7): L07108.1- L07108.5.

[65] Brown S S, Dub’e W P, Osthoff H D, et al. High resolution vertical distributions of NO3 and N2 O5 through the nocturnal boundary layer[J]. Atmos. Chem. Phys, 2007, 7(1): 139-149.

[66] Brown S S, Dube W P, Bahreini R, e t al. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX[J]. Atmos. Chem. Phys., 2013, 13(22): 11317-11337.

[67] Dorn H P, Apodaca R L, Ball S M, et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR[J]. Atmos. Meas. Tech., 2013, 6: 1111-1140.

[68] Asaf D, Tas E, Pedersen D, et al. Long-term measurements of NO3 radical at a semiarid urban site: 2. seasonal trends and loss mechanisms[J]. Environ. Sci. Technol., 2010, 44(15): 5901-5907.

[69] Heintz F, Platt U, Flentje H, et al. Long-term observation of nitrate radicals at the Tor Station, Kap Arkona[J]. J. Geophys. Res., 1996, 101(D17): 22891-22910.

[70] McLaren R, Wojtal P, Majonis D, et al. NO3 radical measurements in a polluted marine environment: links to ozone formation[J]. Atmos. Chem. Phys., 2010, 10(9): 4187-4206.

[71] Li S W, Liu W Q, Xie P H, et al. Observation of nitrate radical in the nocturnal boundary layer during a summer field campaign in Pearl River Delta, China[J]. Terr. Atmos. Ocean. Sci., 2012, 23(1): 39-48.

[72] Matsumoto J, Imagawa K, Imai H, et al. Nocturnal sink of NOx via NO3 and N2 O5 in the outflow from a source area in Japan[J]. Atmos. Environ., 2010, 40(33): 6294-6302.

王丹, 谢品华, 胡仁志, 秦敏, 陈浩, 段俊, 朱国梁, 卢雪. 大气环境NO3自由基探测技术研究进展[J]. 大气与环境光学学报, 2015, 10(2): 102. WANG Dan, XIE Pinhua, HU Renzhi, QIN Min, CHEN Hao, DUAN Jun, ZHU Guoliang, LU Xue. Progress of Measurement of Atmospheric NO3 Radicals[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 102.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!