光学学报, 2018, 38 (12): 1202001, 网络出版: 2019-05-10  

原子光刻中原子通量的优化研究 下载: 754次

Optimization of Atom Flux in Atom Lithography
作者单位
同济大学物理科学与工程学院, 上海 200092
引用该论文

陈杰, 刘杰, 朱立, 邓晓, 程鑫彬, 李同保. 原子光刻中原子通量的优化研究[J]. 光学学报, 2018, 38(12): 1202001.

Jie Chen, Jie Liu, Li Zhu, Xiao Deng, Xinbin Cheng, Tongbao Li. Optimization of Atom Flux in Atom Lithography[J]. Acta Optica Sinica, 2018, 38(12): 1202001.

参考文献

[1] 李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13.

    李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13.

    李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13.

    李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13.

    李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13.

    Li T B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13.

    Li T B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13.

    Li T B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13.

    Li T B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13.

    Li T B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13.

[2] 伊路福, 熊显名, 张文涛, 等. 直边衍射驻波场中铬原子三维沉积特性分析[J]. 光学学报, 2017, 37(6): 0614004.

    伊路福, 熊显名, 张文涛, 等. 直边衍射驻波场中铬原子三维沉积特性分析[J]. 光学学报, 2017, 37(6): 0614004.

    伊路福, 熊显名, 张文涛, 等. 直边衍射驻波场中铬原子三维沉积特性分析[J]. 光学学报, 2017, 37(6): 0614004.

    伊路福, 熊显名, 张文涛, 等. 直边衍射驻波场中铬原子三维沉积特性分析[J]. 光学学报, 2017, 37(6): 0614004.

    伊路福, 熊显名, 张文涛, 等. 直边衍射驻波场中铬原子三维沉积特性分析[J]. 光学学报, 2017, 37(6): 0614004.

    Yi L F, Xiong X M, Zhang W T, et al. Analysis of three-dimensional deposition characteristics of chromium atoms in the straight edge diffraction standing wave field[J]. Acta Optica Sinica, 2017, 37(6): 0614004.

    Yi L F, Xiong X M, Zhang W T, et al. Analysis of three-dimensional deposition characteristics of chromium atoms in the straight edge diffraction standing wave field[J]. Acta Optica Sinica, 2017, 37(6): 0614004.

    Yi L F, Xiong X M, Zhang W T, et al. Analysis of three-dimensional deposition characteristics of chromium atoms in the straight edge diffraction standing wave field[J]. Acta Optica Sinica, 2017, 37(6): 0614004.

    Yi L F, Xiong X M, Zhang W T, et al. Analysis of three-dimensional deposition characteristics of chromium atoms in the straight edge diffraction standing wave field[J]. Acta Optica Sinica, 2017, 37(6): 0614004.

    Yi L F, Xiong X M, Zhang W T, et al. Analysis of three-dimensional deposition characteristics of chromium atoms in the straight edge diffraction standing wave field[J]. Acta Optica Sinica, 2017, 37(6): 0614004.

[3] McClelland J J, Scheinfein M R. Laser focusing of atoms: a particle-optics approach[J]. Journal of the Optical Society of America B, 1991, 8(9): 1974-1986.

    McClelland J J, Scheinfein M R. Laser focusing of atoms: a particle-optics approach[J]. Journal of the Optical Society of America B, 1991, 8(9): 1974-1986.

    McClelland J J, Scheinfein M R. Laser focusing of atoms: a particle-optics approach[J]. Journal of the Optical Society of America B, 1991, 8(9): 1974-1986.

    McClelland J J, Scheinfein M R. Laser focusing of atoms: a particle-optics approach[J]. Journal of the Optical Society of America B, 1991, 8(9): 1974-1986.

    McClelland J J, Scheinfein M R. Laser focusing of atoms: a particle-optics approach[J]. Journal of the Optical Society of America B, 1991, 8(9): 1974-1986.

[4] Ekstrom C R, Keith D W, Pritchard D E. Atom optics using microfabricated structures[J]. Applied Physics B, 1992, 54(5): 369-374.

    Ekstrom C R, Keith D W, Pritchard D E. Atom optics using microfabricated structures[J]. Applied Physics B, 1992, 54(5): 369-374.

    Ekstrom C R, Keith D W, Pritchard D E. Atom optics using microfabricated structures[J]. Applied Physics B, 1992, 54(5): 369-374.

    Ekstrom C R, Keith D W, Pritchard D E. Atom optics using microfabricated structures[J]. Applied Physics B, 1992, 54(5): 369-374.

    Ekstrom C R, Keith D W, Pritchard D E. Atom optics using microfabricated structures[J]. Applied Physics B, 1992, 54(5): 369-374.

[5] McClelland J J, Scholten R E, Palm E C, et al. . Laser-focused atomic deposition[J]. Science, 1993, 262(5135): 877-880.

    McClelland J J, Scholten R E, Palm E C, et al. . Laser-focused atomic deposition[J]. Science, 1993, 262(5135): 877-880.

    McClelland J J, Scholten R E, Palm E C, et al. . Laser-focused atomic deposition[J]. Science, 1993, 262(5135): 877-880.

    McClelland J J, Scholten R E, Palm E C, et al. . Laser-focused atomic deposition[J]. Science, 1993, 262(5135): 877-880.

    McClelland J J, Scholten R E, Palm E C, et al. . Laser-focused atomic deposition[J]. Science, 1993, 262(5135): 877-880.

[6] Ma Y, Li T B, Wu W, et al. Laser-focused atomic deposition for nanoscale grating[J]. Chinese Physics Letters, 2011, 28(7): 073202.

    Ma Y, Li T B, Wu W, et al. Laser-focused atomic deposition for nanoscale grating[J]. Chinese Physics Letters, 2011, 28(7): 073202.

    Ma Y, Li T B, Wu W, et al. Laser-focused atomic deposition for nanoscale grating[J]. Chinese Physics Letters, 2011, 28(7): 073202.

    Ma Y, Li T B, Wu W, et al. Laser-focused atomic deposition for nanoscale grating[J]. Chinese Physics Letters, 2011, 28(7): 073202.

    Ma Y, Li T B, Wu W, et al. Laser-focused atomic deposition for nanoscale grating[J]. Chinese Physics Letters, 2011, 28(7): 073202.

[7] McClelland J J, Hill S B, Pichler M, et al. . Nanotechnology with atom optics[J]. Science and Technology of Advanced Materials, 2004, 5(5/6): 575-580.

    McClelland J J, Hill S B, Pichler M, et al. . Nanotechnology with atom optics[J]. Science and Technology of Advanced Materials, 2004, 5(5/6): 575-580.

    McClelland J J, Hill S B, Pichler M, et al. . Nanotechnology with atom optics[J]. Science and Technology of Advanced Materials, 2004, 5(5/6): 575-580.

    McClelland J J, Hill S B, Pichler M, et al. . Nanotechnology with atom optics[J]. Science and Technology of Advanced Materials, 2004, 5(5/6): 575-580.

    McClelland J J, Hill S B, Pichler M, et al. . Nanotechnology with atom optics[J]. Science and Technology of Advanced Materials, 2004, 5(5/6): 575-580.

[8] Deng X, Liu J, Zhu L, et al. Natural square ruler at nanoscale[J]. Applied Physics Express, 2018, 11(7): 075201.

    Deng X, Liu J, Zhu L, et al. Natural square ruler at nanoscale[J]. Applied Physics Express, 2018, 11(7): 075201.

    Deng X, Liu J, Zhu L, et al. Natural square ruler at nanoscale[J]. Applied Physics Express, 2018, 11(7): 075201.

    Deng X, Liu J, Zhu L, et al. Natural square ruler at nanoscale[J]. Applied Physics Express, 2018, 11(7): 075201.

    Deng X, Liu J, Zhu L, et al. Natural square ruler at nanoscale[J]. Applied Physics Express, 2018, 11(7): 075201.

[9] Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

    Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

    Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

    Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

    Bjorkholm J E, Freeman R R, Ashkin A, et al. Observation of focusing of neutral atoms by the dipole forces of resonance-radiation pressure[J]. Physical Review Letters, 1978, 41(20): 1361-1364.

[10] Timp G, Behringer R E, Tennant D M, et al. Using light as a lens for submicron, neutral-atom lithography[J]. Physical Review Letters, 1992, 69(11): 1636-1639.

    Timp G, Behringer R E, Tennant D M, et al. Using light as a lens for submicron, neutral-atom lithography[J]. Physical Review Letters, 1992, 69(11): 1636-1639.

    Timp G, Behringer R E, Tennant D M, et al. Using light as a lens for submicron, neutral-atom lithography[J]. Physical Review Letters, 1992, 69(11): 1636-1639.

    Timp G, Behringer R E, Tennant D M, et al. Using light as a lens for submicron, neutral-atom lithography[J]. Physical Review Letters, 1992, 69(11): 1636-1639.

    Timp G, Behringer R E, Tennant D M, et al. Using light as a lens for submicron, neutral-atom lithography[J]. Physical Review Letters, 1992, 69(11): 1636-1639.

[11] McGowan R W, Giltner D M, Lee S A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms[J]. Optics Letters, 1995, 20(24): 2535-2537.

    McGowan R W, Giltner D M, Lee S A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms[J]. Optics Letters, 1995, 20(24): 2535-2537.

    McGowan R W, Giltner D M, Lee S A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms[J]. Optics Letters, 1995, 20(24): 2535-2537.

    McGowan R W, Giltner D M, Lee S A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms[J]. Optics Letters, 1995, 20(24): 2535-2537.

    McGowan R W, Giltner D M, Lee S A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms[J]. Optics Letters, 1995, 20(24): 2535-2537.

[12] Ohmukai R, Urabe S, Watanabe M. Atom lithography with ytterbium beam[J]. Applied Physics B, 2003, 77(4): 415-419.

    Ohmukai R, Urabe S, Watanabe M. Atom lithography with ytterbium beam[J]. Applied Physics B, 2003, 77(4): 415-419.

    Ohmukai R, Urabe S, Watanabe M. Atom lithography with ytterbium beam[J]. Applied Physics B, 2003, 77(4): 415-419.

    Ohmukai R, Urabe S, Watanabe M. Atom lithography with ytterbium beam[J]. Applied Physics B, 2003, 77(4): 415-419.

    Ohmukai R, Urabe S, Watanabe M. Atom lithography with ytterbium beam[J]. Applied Physics B, 2003, 77(4): 415-419.

[13] te Sligte E, Smeets B, et al. . Atom lithography of Fe[J]. Applied Physics Letters, 2004, 85(19): 4493-4495.

    te Sligte E, Smeets B, et al. . Atom lithography of Fe[J]. Applied Physics Letters, 2004, 85(19): 4493-4495.

    te Sligte E, Smeets B, et al. . Atom lithography of Fe[J]. Applied Physics Letters, 2004, 85(19): 4493-4495.

    te Sligte E, Smeets B, et al. . Atom lithography of Fe[J]. Applied Physics Letters, 2004, 85(19): 4493-4495.

    te Sligte E, Smeets B, et al. . Atom lithography of Fe[J]. Applied Physics Letters, 2004, 85(19): 4493-4495.

[14] McClelland J J, Celotta R J. Laser-focused atomic deposition-nanofabrication via atom optics[J]. Thin Solid Films, 2000, 367(1/2): 25-27.

    McClelland J J, Celotta R J. Laser-focused atomic deposition-nanofabrication via atom optics[J]. Thin Solid Films, 2000, 367(1/2): 25-27.

    McClelland J J, Celotta R J. Laser-focused atomic deposition-nanofabrication via atom optics[J]. Thin Solid Films, 2000, 367(1/2): 25-27.

    McClelland J J, Celotta R J. Laser-focused atomic deposition-nanofabrication via atom optics[J]. Thin Solid Films, 2000, 367(1/2): 25-27.

    McClelland J J, Celotta R J. Laser-focused atomic deposition-nanofabrication via atom optics[J]. Thin Solid Films, 2000, 367(1/2): 25-27.

[15] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

    Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

    Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

    Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

    Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

[16] 温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201.

    温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201.

    温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201.

    温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201.

    温歆, 张钰伊, 钱静. 玻色-爱因斯坦凝聚体穿越高斯光场的透镜效应[J]. 激光与光电子学进展, 2017, 54(11): 110201.

    Wen X, Zhang Y Y, Qian J. Lensing effect induced by a Bose-Einstein condensate passing a Gaussian laser field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

    Wen X, Zhang Y Y, Qian J. Lensing effect induced by a Bose-Einstein condensate passing a Gaussian laser field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

    Wen X, Zhang Y Y, Qian J. Lensing effect induced by a Bose-Einstein condensate passing a Gaussian laser field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

    Wen X, Zhang Y Y, Qian J. Lensing effect induced by a Bose-Einstein condensate passing a Gaussian laser field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

    Wen X, Zhang Y Y, Qian J. Lensing effect induced by a Bose-Einstein condensate passing a Gaussian laser field[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110201.

[17] McClelland J J, Gupta R, Jabbour Z J, et al. . Laser focusing of atoms for nanostructure fabrication[J]. Australian Journal of Physics, 1996, 49(2): 555-565.

    McClelland J J, Gupta R, Jabbour Z J, et al. . Laser focusing of atoms for nanostructure fabrication[J]. Australian Journal of Physics, 1996, 49(2): 555-565.

    McClelland J J, Gupta R, Jabbour Z J, et al. . Laser focusing of atoms for nanostructure fabrication[J]. Australian Journal of Physics, 1996, 49(2): 555-565.

    McClelland J J, Gupta R, Jabbour Z J, et al. . Laser focusing of atoms for nanostructure fabrication[J]. Australian Journal of Physics, 1996, 49(2): 555-565.

    McClelland J J, Gupta R, Jabbour Z J, et al. . Laser focusing of atoms for nanostructure fabrication[J]. Australian Journal of Physics, 1996, 49(2): 555-565.

[18] Dushman S, Brown S C. Scientific foundations of vacuum technique[J]. American Journal of Physics, 1962, 30(8): 612.

    Dushman S, Brown S C. Scientific foundations of vacuum technique[J]. American Journal of Physics, 1962, 30(8): 612.

    Dushman S, Brown S C. Scientific foundations of vacuum technique[J]. American Journal of Physics, 1962, 30(8): 612.

    Dushman S, Brown S C. Scientific foundations of vacuum technique[J]. American Journal of Physics, 1962, 30(8): 612.

    Dushman S, Brown S C. Scientific foundations of vacuum technique[J]. American Journal of Physics, 1962, 30(8): 612.

[19] Brandes EA. Smithells metals reference book[M]. 6th ed. London: Butterworths, 1983.

    Brandes EA. Smithells metals reference book[M]. 6th ed. London: Butterworths, 1983.

    Brandes EA. Smithells metals reference book[M]. 6th ed. London: Butterworths, 1983.

    Brandes EA. Smithells metals reference book[M]. 6th ed. London: Butterworths, 1983.

    Brandes EA. Smithells metals reference book[M]. 6th ed. London: Butterworths, 1983.

[20] Smith KF. Molecular beams[M]. New York: John Wiley & Sons, 1955.

    Smith KF. Molecular beams[M]. New York: John Wiley & Sons, 1955.

    Smith KF. Molecular beams[M]. New York: John Wiley & Sons, 1955.

    Smith KF. Molecular beams[M]. New York: John Wiley & Sons, 1955.

    Smith KF. Molecular beams[M]. New York: John Wiley & Sons, 1955.

[21] Zhang B W, Li T B, Ma Y. One-dimensional Doppler laser collimation of chromium beam with a novel pre-collimating scheme[J]. Chinese Optics Letters, 2008, 6(10): 782-784.

    Zhang B W, Li T B, Ma Y. One-dimensional Doppler laser collimation of chromium beam with a novel pre-collimating scheme[J]. Chinese Optics Letters, 2008, 6(10): 782-784.

    Zhang B W, Li T B, Ma Y. One-dimensional Doppler laser collimation of chromium beam with a novel pre-collimating scheme[J]. Chinese Optics Letters, 2008, 6(10): 782-784.

    Zhang B W, Li T B, Ma Y. One-dimensional Doppler laser collimation of chromium beam with a novel pre-collimating scheme[J]. Chinese Optics Letters, 2008, 6(10): 782-784.

    Zhang B W, Li T B, Ma Y. One-dimensional Doppler laser collimation of chromium beam with a novel pre-collimating scheme[J]. Chinese Optics Letters, 2008, 6(10): 782-784.

[22] McClelland J J, Anderson W R, Bradley C C, et al. . Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(2): 99-113.

    McClelland J J, Anderson W R, Bradley C C, et al. . Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(2): 99-113.

    McClelland J J, Anderson W R, Bradley C C, et al. . Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(2): 99-113.

    McClelland J J, Anderson W R, Bradley C C, et al. . Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(2): 99-113.

    McClelland J J, Anderson W R, Bradley C C, et al. . Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition[J]. Journal of Research of the National Institute of Standards and Technology, 2003, 108(2): 99-113.

[23] Zhang W J, Ma Y, Li T B, et al. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography[J]. Chinese Physics B, 2013, 22(2): 228-231.

    Zhang W J, Ma Y, Li T B, et al. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography[J]. Chinese Physics B, 2013, 22(2): 228-231.

    Zhang W J, Ma Y, Li T B, et al. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography[J]. Chinese Physics B, 2013, 22(2): 228-231.

    Zhang W J, Ma Y, Li T B, et al. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography[J]. Chinese Physics B, 2013, 22(2): 228-231.

    Zhang W J, Ma Y, Li T B, et al. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography[J]. Chinese Physics B, 2013, 22(2): 228-231.

陈杰, 刘杰, 朱立, 邓晓, 程鑫彬, 李同保. 原子光刻中原子通量的优化研究[J]. 光学学报, 2018, 38(12): 1202001. Jie Chen, Jie Liu, Li Zhu, Xiao Deng, Xinbin Cheng, Tongbao Li. Optimization of Atom Flux in Atom Lithography[J]. Acta Optica Sinica, 2018, 38(12): 1202001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!