红外与激光工程, 2015, 44 (10): 2938, 网络出版: 2016-01-26  

红外瞄具温度应力可靠性检测系统研究

Temperature stress reliability testing system for infrared aiming device
作者单位
1 长春理工大学光电工程学院,吉林 长春 130022
2 长春大学电子信息工程学院,吉林 长春 130022
3 北方光电股份有限公司,陕西 西安 710065
摘要
为了检测红外瞄具在高低温恶劣环境下对不同波长的红外目标成像可靠性,利用黑体和平行光管组成的光学系统模拟无穷远红外目标,红外瞄具置于高低温环境下,CCD采集红外瞄具对红外目标所成的像,从而判定高低温下红外瞄具成像质量。所设计的平行光管视场大,各波长对应焦平面处在20 lp/mm空间频率下的MTF均高于0.2。同时为了实现快速准确地在检测系统中提供稳定的-55~70 ℃的高低温实验条件,采用一种基于自适应模糊PID温度控制技术。采用自适应因子将模糊推理器和PID控制器相结合,通过在线自调整控制参数,进一步提高了PID控制器的性能和系统的控制精度。实验表明该方法提高了常规PID控制的动态响应过程并保持无静态误差,其控制精度可达±0.05 ℃。
Abstract
In order to detect the imaging reliability of infrared target with difference wavelength at high & low temperature,black body and IR collimator are adopted to simulate infinite target,IR aiming device is located in high & low temperature and image of IR target is captured by CCD so as to judge the imaging quality of IR aiming device. The designed collimator was with wild-field and its MTF at 20 lp/mm spatial frequency was higher than 0.2 in corresponding focal plane of different wavelength. Meanwhile in order to provide an stable -55 ℃-70 ℃ high & low temperature testing condition rapidly and accurately, a self-adaption fuzzy PID temperature control technology was provided. Adaptive factor was adopted to combine fuzzy inferior and PID controller. By adjusting control parameters on-line, the performance of PID controller was further improved and system control accuracy was raised up. The experimental results show that this method not only improves the dynamic response process but also guarantee no static error. The temperature control precision is ±0.05 ℃.
参考文献

[1] 杨瑞宁, 安志勇, 曹维国, 等.光学瞄具出瞳直径、出瞳距离与放大率现代测试技术研究[J].兵工学报, 2009, 38(4): 1142-1144.

    Yang Ruining, An Zhiyong, Cao Weiguo, et al. Research on the modern testing system of exit pupil diameter, distance and magnification of optical sighting telescope[J]. Acta Armamentarii, 2009, 38(4): 1142-1144. (in Chinese)

[2] 王劲松, 安志勇, 李海兰.反射式平行光管的红外瞄具零位走动量测量方法研究[J].兵工学报, 2010, 31(11): 1422-1425.

    Wang Jinsong, An Zhiyong, Li Hailan. Research on the measuring method to the IR aiming sight′s sight line alteration of reflection type collimator[J]. Acta Armamentarii, 2010, 31(11): 1142-1425. (in Chinese)

[3] 戴俊珂, 姜海明, 钟奇润, 等. 基于自整定模糊PID算法的LD温度控制系统[J]. 红外与激光工程, 2014, 43(10): 3277-3291.

    Dai Junke, Jiang Haiming, Zhong Qirun, et al. LD temperature self-tuning control system based on fuzzy PID algorithm[J]. Infrared and Laser Engineering, 2014, 43(10): 3277-3291. (in Chinese)

[4] 李江澜, 石云波, 赵鹏飞, 等. TEC的高精度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6): 3287-3291.

    Li Jianglan, Shi Yunbo, Zhao Pengfei, et al. High precision thermostat system with TEC for laser diode[J]. Infrared and Laser Engineering, 2014, 43(6): 3287-3291. (in Chinese)

[5] Ma F. An improved fuzzy PID control algorithm applied in liquid mixing system[C]//2014 IEEE International Conference on Information and Automation(ICIA), 2014: 587-591.

[6] Yusoff Z M, Muhammad Z, Taib M N, et al. Implementation of hybrid fuzzy plus PID controller in real time steam temperature control[C]//2013 IEEE 3rd International Conference on System Engineering and Technology(ICSET), 2013: 356-360.

[7] Ma F. An improved fuzzy PID control algorithm applied in liquid mixing system[C]//2014 IEEE International Conference on Information and Automation(ICIA), 2014: 587-591.

[8] 董朝轶, 陈晓艳, 李健.煤样燃点检测仪表温度自适应控制系统设计[J].仪器仪表学报, 2011, 32(9): 2114-2120.

    Dong Chaoyi, Chen Xiaoyan, Li Jian. Design of temperature adaptive control system for coal sample burning point detection instrumen[J]. Chinese Journal of Scientific Instrument, 2011, 32(9): 2114-2120. (in Chinese)

[9] 汤红诚, 李著信. Matlab在模糊PID伺服系统控制中的应用[J]. 仪器仪表学报, 2003, 24(4): 595-602.

    Tang Hongcheng, Li Zhuxin. The use of Matlab in fuzzy PID servo system control[J]. Chinese Journal of Scientific Instrument, 2003, 24(4): 595-602. (in Chinese)

柳鸣, 李丹妮, 张国玉, 孙向阳, 赵昭, 段洁. 红外瞄具温度应力可靠性检测系统研究[J]. 红外与激光工程, 2015, 44(10): 2938. Liu Ming, Li Danni, Zhang Guoyu, Sun Xiangyang, Zhao Zhao, Duan Jie. Temperature stress reliability testing system for infrared aiming device[J]. Infrared and Laser Engineering, 2015, 44(10): 2938.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!