红外与毫米波学报, 2015, 34 (2): 218, 网络出版: 2015-05-20   

1053 nm高速超辐射发光二极管的研制及其光电特性

Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm
作者单位
1 重庆大学 机械传动国家重点实验室, 重庆 400044
2 重庆大学 应用物理系, 重庆 401331
3 重庆光电技术研究所, 重庆 400060
4 重庆电子工程职业学院 软件学院, 重庆 401331
引用该论文

段利华, 张淑芳, 周勇, 张靖, 郭洪, 罗庆春, 方亮. 1053 nm高速超辐射发光二极管的研制及其光电特性[J]. 红外与毫米波学报, 2015, 34(2): 218.

DUAN Li-Hua, ZHANG Shu-Fang, ZHOU Yong, ZHANG Jing, GUO Hong, LUO Qing-Chun, FANG Liang. Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 218.

参考文献

[1] Andreeva E V, Ilichenko S N, Kostin Y O, et al. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900nm[J]. Quantum Electronics, 2013,43(8): 751-756.

[2] Wei J, Park S, Hu Y, et al. A high-power, broad-bandwidth 1310nm superluminescent diode with low spectral modulation[C]. In Biomedical Optics 2006. International Society for Optics and Photonics, 2006: 60791P-60791P-6.

[3] Song J H, Cho S H, Han I K, et al. High-power broadband superluminescent diode with low spectral modulation at 1.5μm wavelength[J]. IEEE Photonics Technology Letters, 2000,12: 783-785.

[4] Kwong N S K, Chaim N B, Chen T. High-power 1.3-μm superluminescent diode[J]. Appl.Phys.Lett, 1989,54: 298-300.

[5] Ohgoh T, Mukai A, Yaguchi J, et al, Demonstration of 1.0μm InGaAs high-power and broad spectral bandwidth superluminescent diodes by using dual quantum well structure[J]. Applied Physics Express, 2013,6(1): 014101-1~014101-4.

[6] JI Fan, XU Li-Xin, WANG Jian-Jun, et al. Analysis of pulse fluctuation caused by modulation and filtering[J]. Chinese Journal of Quantum Electronics(纪帆, 徐立新, 王建军, 等.调制滤波引起脉冲起伏研究.量子电子学报)2008,25(4): 413-417.

[7] Zhang H T, Liu M, Yan P, et al. SLD seeded all fiber cascaded nanosecond pulsed amplifier[J]. Laser Physics, 2012,22(8): 1331-1334.

[8] Guardalben M J, Waxer L J. Improvements to long-pulse system performance and operation efficiency on OMEGA EP[J]. Proceeding of SPIE, 2011,7916: 79160G-1~79160G-10.

[9] Schlenker D, Miyamoto T, Chen Z, et al. Growth of highly strained GaInAs/GaAs quantum wells for 1.2μm wavelength lasers[J]. J.Crystal.Growth, 2000,209(1): 27-36.

[10] Grandjean N, Massies J. Epitaxial growth of highly straied InGaAs on GaAs(001): the role of surface diffusion length[J]. J.Crystal.Growth, 1993,134(1): 51-62.

[11] Su Y K, Chen W C, Wan C T, et al. Optimization of highly strained InGaAs/GaAs quantum well lasers grown by MOVPE[J]. J.Crystal.Growth, 2008,310(15): 3615-3620.

[12] Li X, Duan L H, Zhou Y, et al. Strained InGaAs/GaAs quantum-well laser emitting at 1054nm[J]. Journal of superconductivity and novel magnetism, 2010,23(6): 937-939.

[13] Schlenker D, Pan Z, Miyamoto T, et al. Effect of surface quality on overgrowth of highly strained GaInAs/GaAs quantum wells and improvement by a strained buffer layer[J]. Japanese journal of applied physics, 1999,38(9R): 5023-5027.

[14] Park J, Li X.Theoretical and numerical analysis of superluminescent diodes[J]. Journal of lightwave technology, 2006,24(6): 2473-2480.

[15] Chan C H, Wu J D, Huang Y S, et al, Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy[J]. Materials Chemistry and Physics, 2010,124: 1126-1133.

[16] Zhan F, Li L, Ma X H, et al. Theoretical study of linewidth enhancement factor of InGaAs/GaAs strained quantum well lasers[J]. Acta Phys.Sin, 2012, 61(5): 054209-1~ 054209-6.

[17] Ye Z C, Shu Y C, Cao X, et al. Strain effect on temperature dependent photoluminescence from InxGa1-xAs/GaAs quantum wells[J]. Chinese Journal of Luminescence, 2011,32(2): 164-168.

[18] Saidi F, Hassen F, Maaref H, et al. Optical study of BxGa1-xAs/GaAs epilayers[J]. Materials Science and Engineering C, 2006,26: 236-239.

[19] Lai F I, Kuo S Y, Wang J S, et al. Temperature dependent optical properties of In0.34Ga0.66As1-xNx/GaAs single quantum well with high nitrogen content for 1.55μm application grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2006,291: 27-33.

[20] Song J H, Kim K, Leem Y A, et al. High-power broadband superluminescent diode using selective area growth at 1.5-μm wavelength[J]. IEEE Photonics Technology Letters, 2007,19(19): 1415-1417.

[21] Park J W, Li X.Theoretical and numerical analysis of superluminescent diodes[J]. Journal of lightwave technology, 2006,24(6): 2473-2480.

[22] Higashi T, Yamamoto T, Ogita S,et al. Experimental analysis of temperature dependence of oscillation wavelength in quantum-well FP semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1998,34(9): 1680-1689.

段利华, 张淑芳, 周勇, 张靖, 郭洪, 罗庆春, 方亮. 1053 nm高速超辐射发光二极管的研制及其光电特性[J]. 红外与毫米波学报, 2015, 34(2): 218. DUAN Li-Hua, ZHANG Shu-Fang, ZHOU Yong, ZHANG Jing, GUO Hong, LUO Qing-Chun, FANG Liang. Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 218.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!