红外与毫米波学报, 2015, 34 (2): 218, 网络出版: 2015-05-20   

1053 nm高速超辐射发光二极管的研制及其光电特性

Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm
作者单位
1 重庆大学 机械传动国家重点实验室, 重庆 400044
2 重庆大学 应用物理系, 重庆 401331
3 重庆光电技术研究所, 重庆 400060
4 重庆电子工程职业学院 软件学院, 重庆 401331
摘要
制备了一种新型的具有高调制带宽的1053nm超辐射发光二极管(SLD).利用光荧光(PL)测试分析了不同温度、不同生长速率对SLD芯片外延材料质量的影响, 优化了InGaAs/GaAs量子阱的生长温度与生长速率.分析了SLD模块的光电特性随温度与注入电流的变化关系.研究结果表明, SLD输出波长随温度的漂移系数为0.35nm/℃, 其输出波长随注入电流的漂移对温度并不敏感.在25℃、100mA注入电流下SLD的-3dB调制带宽达到1.7GHz, 尾纤输出功率2.5mW, 相应的光谱半宽为24nm, 光谱波纹为0.15dB.
Abstract
A high speed 1053nm superluminescent diode (SLD) with ridge-waveguide structure has been fabricated. By optimizing of the growth parameters such as temperature, growth rate, epitaxial materials with excellent crystal quality were attained. The photoelectric characteristics of the SLD depended on temperature and driver current were analyzed. The coefficient of the wavelength shift with temperature was 0.35nm/℃.The wavelength of the SLD shift with driver current insensitive to the temperature. A -3dB cutoff frequency of 1.7GHz was obtained at a DC bias current of 100mA and 25℃,corresponding to 2.5mW output power from single mode fiber (SMF) with spectral modulation of less than 0.15dB and spectral width of 24nm.
参考文献

[1] Andreeva E V, Ilichenko S N, Kostin Y O, et al. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900nm[J]. Quantum Electronics, 2013,43(8): 751-756.

[2] Wei J, Park S, Hu Y, et al. A high-power, broad-bandwidth 1310nm superluminescent diode with low spectral modulation[C]. In Biomedical Optics 2006. International Society for Optics and Photonics, 2006: 60791P-60791P-6.

[3] Song J H, Cho S H, Han I K, et al. High-power broadband superluminescent diode with low spectral modulation at 1.5μm wavelength[J]. IEEE Photonics Technology Letters, 2000,12: 783-785.

[4] Kwong N S K, Chaim N B, Chen T. High-power 1.3-μm superluminescent diode[J]. Appl.Phys.Lett, 1989,54: 298-300.

[5] Ohgoh T, Mukai A, Yaguchi J, et al, Demonstration of 1.0μm InGaAs high-power and broad spectral bandwidth superluminescent diodes by using dual quantum well structure[J]. Applied Physics Express, 2013,6(1): 014101-1~014101-4.

[6] JI Fan, XU Li-Xin, WANG Jian-Jun, et al. Analysis of pulse fluctuation caused by modulation and filtering[J]. Chinese Journal of Quantum Electronics(纪帆, 徐立新, 王建军, 等.调制滤波引起脉冲起伏研究.量子电子学报)2008,25(4): 413-417.

[7] Zhang H T, Liu M, Yan P, et al. SLD seeded all fiber cascaded nanosecond pulsed amplifier[J]. Laser Physics, 2012,22(8): 1331-1334.

[8] Guardalben M J, Waxer L J. Improvements to long-pulse system performance and operation efficiency on OMEGA EP[J]. Proceeding of SPIE, 2011,7916: 79160G-1~79160G-10.

[9] Schlenker D, Miyamoto T, Chen Z, et al. Growth of highly strained GaInAs/GaAs quantum wells for 1.2μm wavelength lasers[J]. J.Crystal.Growth, 2000,209(1): 27-36.

[10] Grandjean N, Massies J. Epitaxial growth of highly straied InGaAs on GaAs(001): the role of surface diffusion length[J]. J.Crystal.Growth, 1993,134(1): 51-62.

[11] Su Y K, Chen W C, Wan C T, et al. Optimization of highly strained InGaAs/GaAs quantum well lasers grown by MOVPE[J]. J.Crystal.Growth, 2008,310(15): 3615-3620.

[12] Li X, Duan L H, Zhou Y, et al. Strained InGaAs/GaAs quantum-well laser emitting at 1054nm[J]. Journal of superconductivity and novel magnetism, 2010,23(6): 937-939.

[13] Schlenker D, Pan Z, Miyamoto T, et al. Effect of surface quality on overgrowth of highly strained GaInAs/GaAs quantum wells and improvement by a strained buffer layer[J]. Japanese journal of applied physics, 1999,38(9R): 5023-5027.

[14] Park J, Li X.Theoretical and numerical analysis of superluminescent diodes[J]. Journal of lightwave technology, 2006,24(6): 2473-2480.

[15] Chan C H, Wu J D, Huang Y S, et al, Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy[J]. Materials Chemistry and Physics, 2010,124: 1126-1133.

[16] Zhan F, Li L, Ma X H, et al. Theoretical study of linewidth enhancement factor of InGaAs/GaAs strained quantum well lasers[J]. Acta Phys.Sin, 2012, 61(5): 054209-1~ 054209-6.

[17] Ye Z C, Shu Y C, Cao X, et al. Strain effect on temperature dependent photoluminescence from InxGa1-xAs/GaAs quantum wells[J]. Chinese Journal of Luminescence, 2011,32(2): 164-168.

[18] Saidi F, Hassen F, Maaref H, et al. Optical study of BxGa1-xAs/GaAs epilayers[J]. Materials Science and Engineering C, 2006,26: 236-239.

[19] Lai F I, Kuo S Y, Wang J S, et al. Temperature dependent optical properties of In0.34Ga0.66As1-xNx/GaAs single quantum well with high nitrogen content for 1.55μm application grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2006,291: 27-33.

[20] Song J H, Kim K, Leem Y A, et al. High-power broadband superluminescent diode using selective area growth at 1.5-μm wavelength[J]. IEEE Photonics Technology Letters, 2007,19(19): 1415-1417.

[21] Park J W, Li X.Theoretical and numerical analysis of superluminescent diodes[J]. Journal of lightwave technology, 2006,24(6): 2473-2480.

[22] Higashi T, Yamamoto T, Ogita S,et al. Experimental analysis of temperature dependence of oscillation wavelength in quantum-well FP semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1998,34(9): 1680-1689.

段利华, 张淑芳, 周勇, 张靖, 郭洪, 罗庆春, 方亮. 1053 nm高速超辐射发光二极管的研制及其光电特性[J]. 红外与毫米波学报, 2015, 34(2): 218. DUAN Li-Hua, ZHANG Shu-Fang, ZHOU Yong, ZHANG Jing, GUO Hong, LUO Qing-Chun, FANG Liang. Preparation and photoelectric characteristics of high speed superluminescent diode emitting at 1053 nm[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 218.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!