光学 精密工程, 2019, 27 (1): 129, 网络出版: 2019-04-06   

无基膜高深宽比双面集成微结构元件的制作

Fabrication of two-sided integrated microstructure element with high aspect ratio and without film substrate
作者单位
深圳大学 电子科学与技术学院 微纳光电子技术研究所, 广东 深圳 518060
摘要
基于双面集成微结构薄片元件在集成光学成像、光束整形等方面的应用日益普及, 针对其中一些一体化、高深宽比结构在制作方面的难点问题, 本文提出一种无基膜支撑、高深宽比的双面集成微结构元件的制作新方法——紫外压印改进技术。通过该方法, 成功地制作了无基膜、高深宽比结构的集成导光板样品; 样品上下表面微结构形貌与金属模具在误差范围内保持一致, 转印复制过程的物理结构形变小, 且样品的厚度整体均匀、平整无翘曲。实验结果表明, 本文提出的紫外压印改进技术方法能有效地制作无基膜支撑、双面集成高深宽比的微结构元件, 可望在集成光学成像及光束整形、匀光、导光、聚光等光学器件制作领域有良好应用。
Abstract
Two-sided integrated microstructure elements are increasingly used in the fields of integrated optical imaging and beam shaping. Aimed at resolving the difficulties of fabricating two-sided integrated microstructure elements with integral materials and high aspect ratio structures, a new method was proposed that was an improved ultraviolet imprint technology for fabricating two-sided integrated microstructure elements with high aspect ratios and without a film substrate. By applying this method, integrated light guide plate samples were successfully produced without film substrates and with high aspect ratios. The microstructures on the top and bottom surfaces of the samples were in agreement with the metal modules, within the margin of error, meaning that structural deformation was small in the imprint copying process. Moreover, the integrated light guide plate samples were unbending and of integrally even thickness. The experimental results show that the improved ultraviolet imprint technology can be used to fabricate two-sided integrated microstructure elements with high aspect ratios and without film substrates. This technique is applicable to the fabrication of optical elements with functionalities suitable for integrated optical imaging, beam shaping, light diffusion, light guiding, and light concentration.
参考文献

[1] 董晓彬, 周天丰, 庞思勤, 等. 玻璃模压成形用微沟槽磷化镍模具的超精密切削加工[J]. 光学 精密工程, 2017, 25(12): 2986-2993.

    DONG X B, ZHOU T F, PANG S Q, et al.. Ultraprecision microgroove maching of nickle phosphorous plating mold for glass molding [J]. Opt. Precision Eng., 2017, 25(12): 2986-2993. (in Chinese)

[2] 褚金奎, 康维东, 曾祥伟, 等. 基于柔性纳米压印工艺制备中红外双层金属纳米光栅[J]. 光学 精密工程, 2017, 25(12): 3034-3040.

    CHU J K, KANG W D, ZENG X W, et al.. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography [J]. Opt. Precision Eng., 2017, 25(12): 3034-3040. (in Chinese)

[3] 孟繁斐, 步敬. 集成成像系统中高填充率微透镜阵列的设计与加工[J]. 光学 精密工程, 2017, 25(8): 2130-2138.

    MENG F F, BU J. Design and fabrication for micro-lens array with high fill factor in integral imaging system [J]. Opt. Precision Eng., 2017, 25(8): 2130-2138. (in Chinese)

[4] 刘民哲, 王泰升, 李和福, 等. 静电场辅助的微压印光刻技术[J]. 光学 精密工程, 2017, 25(3): 663-671.

    LIU M ZH, WANG T SH, LI H F, et al.. Electrostatic field assisted micro imprint lithography technology [J]. Opt. Precision Eng., 2017, 25(3): 663-671. (in Chinese)

[5] STEENBLIK R A, HURT M J, JORDAN G R. Micro-optics security and image presentation system: US, US 7333268B2 [P]. 2008-02-19.

[6] STEENBLIK R A, HURT M J, JORDAN G R. Image presentation and micro-optic security system: US, US 7468842B2 [P]. 2008-12-23.

[7] CRANE T T, MORCK-HAMILTON K, MARASCHI M, et al.. Micro-optic film structure that alone or together with a security document or label projects images spatially coordinated with static images and/or other projected images: US, US 8284492B2 [P]. 2012-10-09.

[8] STEENBLIK R A, HURT M J, JORDAN G R. Micro-optics security and image presentation system for a security device: US, US 8120855B2 [P]. 2012-02-21.

[9] DRINKWATER K J, HUDSON P M G. Security device for security documents such as bank notes and credit cards: US, US 5712731 [P]. 1998-01-27.

[10] COMMANDER L G, EASTELL C J, ISHERWOOD R, et al.. Optically variable devices: US, US 7830627B2 [P]. 2010-11-09.

[11] XU P, HUANG Y Y, ZHANG X L, et al.. Integrated micro-optical light guide plate [J]. Optics Express, 2013, 21(17): 20159-20170.

[12] XU P, HUANG Y Y, SU Z J, et al.. Research of micro-prism distribution on the bottom surface of the small-size integrated light guide plate [J]. Optics Express, 2015, 23(4): 4887-4896.

[13] PAN J W, HU Y W. Design of a hybrid light guiding plate with high luminance for backlight system application [J]. Journal of Display Technology, 2013, 9(12): 965-971.

[14] CHEN C F, KUO S H. A highly directional light guide plate based on V-groove microstructure cell [J]. Journal of Display Technology, 2014, 10(12): 1030-1035.

[15] TENG T C, KE J C. A novel optical film to provide a highly collimated planar light source [J]. Optics Express, 2013, 21(18): 21444-21455.

[16] SIITONEN S, LAAKKONEN P, TERVO J, et al.. A double-sided grating coupler for thin light guides [J]. Optics Express, 2007, 15(5): 2008-2018.

[17] XU P, CHEN X X, HUANG J F, et al.. A novel highly-integrated light guide plate using micro optical technique [C]. SPIE, 2007, 6834: 683409.

[18] XU P, HUANG Y Y, SU Z J, et al.. Algorithm research on microstructure distribution on the bottom surface of an integrated micro-optical light guide plate [J]. Applied Optics, 2014, 53(7): 1322-1327.

[19] FENG D, JIN G F, YAN Y B, et al.. High quality light guide plates that can control the illumination angle based on microprism structures [J]. Applied Physics Letters, 2004, 85(24): 6016-6018.

[20] YANG X P, YAN Y B, JIN G F. Polarized light-guide plate for liquid crystal display [J]. Optics Express, 2005, 13(21): 8349-8356.

[21] 张静芳, 刘立民, 叶中东, 等. 光学防伪技术及其应用[M]. 北京: 国防工业出版社, 2011.

    ZHANG J F, LIU L M, YE ZH D, et al.. Optical Anti-Counterfeiting Technology and Its Application [M]. Beijing: National Defense Industry Press, 2011. (in Chinese)

[22] 金养智. 光固化材料性能及应用手册[M]. 北京: 化学工业出版社, 2010.

    JIN Y Z. Light Curing Material Performance and Application Manual [M]. Beijing: Chemical Industry Press, 2010. (in Chinese)

徐平, 黄燕燕, 张旭琳, 杨伟, 彭文达. 无基膜高深宽比双面集成微结构元件的制作[J]. 光学 精密工程, 2019, 27(1): 129. XU Ping, HUANG Yan-yan, ZHANG Xu-lin, YANG Wei, PENG Wen-da. Fabrication of two-sided integrated microstructure element with high aspect ratio and without film substrate[J]. Optics and Precision Engineering, 2019, 27(1): 129.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!