光学 精密工程, 2018, 26 (3): 632, 网络出版: 2018-04-25   

反应烧结SiC陶瓷脆性去除特征及刻划力波动行为

Removal characteristics and fluctuation behavior of cutting force during scratch process of RB-SiC ceramics
作者单位
哈尔滨工业大学 机电工程学院 黑龙江 哈尔滨 150001
摘要
主要研究不同加工深度及压头形状刻划条件下反应烧结碳化硅(RB-SiC)陶瓷脆性去除特征和刻划力波动行为之间的关系。采用半径分别为400 nm的金刚石玻氏压头以及8.7 μm的圆锥压头进行恒切深刻划, 并利用扫描电子显微镜对刻划后的SiC陶瓷表面进行测量。最后, 通过Daubechies小波进行横向力和切向力信号分解, 并结合划痕表面损伤形式, 给出不同细节信号及近似信号与加工损伤的联系。实验结果表明:对于圆锥压头, 随着加工深度的增大, 表面形貌为塑性挤出、微破碎和大面积表面破碎共存的形式。此外, 在脆性断裂去除情况下, 随着压头尖端半径的减小, 破碎程度增加且刻划力信号能量由低频段逐渐扩散到整个频域。同时低频段的能量逐渐占据主要地位。不同程度的表面微破碎及边缘微破碎对刻划力细节信号分量贡献较大。反应烧结碳化硅结构本身差异以及缺陷引起的大面积断裂是刻划力波动能量的主要来源, 而且随着加工深度的增大而增大。
Abstract
This paper aims to explore the brittle fracture characteristics and fluctuation behavior of cutting force during scratch process of RB-SiC with different scratch depth and indenter shapes. The diamond Berkvoich indenter with 400 nm and conical indenter with 8.7 um were used to conduct experiments under constant scratch depth mode. Then, the surface morphologies and brittle fracture behavior were observed with a scan electron microscopy (SEM). Finally, Daubechies wavelet was adopted to decompose the lateral and tangential forces, and the relationship between different detail signal/decompose signal and damage types were given. The results show that with the increasing of scratch depth, plastic extrusion, micro fracture and large area fracture are coexist when conical indenter is used. Besides, the degree of fracture is more serious and cutting force signal energy spread from low-frequency to the whole frequency with the decrease of indenter radius and the energy of low-frequency band energy gradually occupied the dominates position. Surface and margin microfracture make the dominate contribution to the detail signal of cutting force. Scratching force fluctuation energy is mainly come from the structure difference and defects of RB-SiC which caused mass crushing, and increased with scratch depth.
参考文献

[1] 张剑寒, 张宇民, 韩杰才, 等. 空间用碳化硅反射镜的设计制造与测试[J]. 光学 精密工程, 2006, 14(2): 179-184.

    ZHANG J H, ZHANG Y M, HAN J C, et al.. Design, fabrication and testing of space-borne SiC mirror[J]. Opt. Precision Eng., 2006, 14(2): 179-184. (in Chinese)

[2] Sarro P M. Silicon carbide as a new MEMS technology[J]. Sensors and Actuators A: Physical, 2000, 82(1-3): 210-218.

[3] Wijesundara M, Azevedo R. Silicon Carbide Microsystems for Harsh Environments[M]. New York: Springer, 2011.

[4] Sein E, Toulemont Y, Safa F, et al.. A Φ 3.5 m diameter Sic telescope for Herschel mission[C]. Astronomical Telescopes and Instrumentation, SPIE, 2003: 606-618.

[5] 刘立飞, 张飞虎, 刘民慧. 碳化硅陶瓷的超声振动辅助磨削[J]. 光学 精密工程, 2015, 23(8): 2229-2235.

    LIU L F, ZHANG F H, LIU M H. Ultrasonic assisted grinding for silicon carbide[J]. Opt. Precision Eng., 2015, 23(8): 2229-2235. (in Chinese)

[6] DOI T, UHLMANN E, MARINESCU I D. Handbook of Ceramics Grinding and Polishing[M]. 2nd ed. Waltham, MA: William Andrew, 2014.

[7] WU C J, LI B Z, YANG J G, et al.. Prediction of grinding force for brittle materials considering co-existing of ductility and brittleness[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5-8): 1967-1975.

[8] CHENG J, WU J, GONG Y D, et al.. Grinding forces in micro slot-grinding (MSG) of single crystal sapphire[J]. International Journal of Machine Tools and Manufacture, 2017, 112: 7-20.

[9] XU S, YAO Z Q, ZHANG M C. Material removal behavior in scratching of zirconia ceramic surface treated with laser thermal shock[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2693-2701.

[10] DAI C W, DING W F, XU J H, et al.. Investigation on size effect of grain wear behavior during grinding nickel-based superalloy Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2907-2917.

[11] QIU ZH J, LIU C C, WANG H R, et al.. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64: 75-85.

[12] SUBHASH G, KLECKA M. Ductile to brittle transition depth during single-grit scratching on alumina ceramics[J]. Journal of the American Ceramic Society, 2007, 90(11): 3704-3707.

[13] ZHANG F H, MENG B B, GENG Y Q, et al.. Friction behavior in nanoscratching of reaction bonded silicon carbide ceramic with Berkovich and sphere indenters[J]. Tribology International, 2016, 97: 21-30.

[14] AHN Y, FARRIS T N, CHANDRASEKAR S. Sliding microindentation fracture of brittle materials: Role of elastic stress fields[J]. Mechanics of Materials, 1998, 29(3-4): 143-152.

[15] Le Houérou V, Sangleboeuf J C, Dériano S, et al.. Surface damage of soda-lime-silica glasses: indentation scratch behavior[J]. Journal of Non-Crystalline Solids, 2003, 316(1): 54-63.

李志鹏, 张飞虎, 孟彬彬. 反应烧结SiC陶瓷脆性去除特征及刻划力波动行为[J]. 光学 精密工程, 2018, 26(3): 632. LI Zhi-Peng, ZHANG Fei-Hu, Meng Bin-Bin. Removal characteristics and fluctuation behavior of cutting force during scratch process of RB-SiC ceramics[J]. Optics and Precision Engineering, 2018, 26(3): 632.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!