中国激光, 2015, 42 (4): 0406001, 网络出版: 2015-02-16   

色散缺陷对Sinc函数型光子晶体带隙的影响

Effect of Dispersive Defect on Bandgap of One-Dimensional Sinc Function Photonic Crystals
王筠 *
作者单位
湖北第二师范学院物理与机电工程学院, 湖北 武汉 430205
摘要
利用传输矩阵法及对色散缺陷层采用洛伦兹振子模型,研究了一维含色散缺陷的Sinc 函数型光子晶体的光子禁带和色散缺陷模,计算了该周期结构的复有效折射率。结果表明,加入缺陷层后可获得宽阔的光子禁带;缺陷层引入色散后在中心圆频率附近色散缺陷模出现;随着振子强度的增大,增益性缺陷模圆频率发生阶跃式移动,其透射率显著增大,而吸收性缺陷模的透射率显著减小,此时缺陷模处的色散曲线有一个近乎垂直的斜率,此处的群速度将大大降低;增益性缺陷层基底折射率对缺陷模频率影响显著;缺陷层位于周期结构中心层时缺陷模频率最低、透射率最大。增大入射角使得缺陷模红移,增益性缺陷模在特殊入射角处透射率会出现千倍增益。
Abstract
By means of transfer matrix method, the photonic band-gap and the center tunneling mode of onedimensional Sinc function photonic crystal with dispersive defect are discussed. The dispersive defects are described by a Lorentz oscillator model. The complex effective index of the structure is calculated. It is found that an extremely wide photonic band gap is obtained after adding defect layer. After the introduction of the dispersion of the defect layer, the dispersive defect modes are appeared near the center angular frequency. With the increase of the oscillator strength, the angular frequency of the gain defect mode is stepped, the transmittance of them is significantly increased, but the transmittance of the absorptive defect mode is reduced, and the slope of a nearly vertical of dispersion curves is obtained at the angular frequency of the dispersive defect mode,group velocity here is greatly reduced. The angular frequency of the defect mode is significantly affected by the refractive index of the substrate of the gain defect layer. The angular frequency of the defect mode is the lowest and transmittance of them is the maximum when the defect layer is located in the center of the periodic structure. The angular frequency of the defect mode is made redshift with the increasing of the angle of incidence, and the transmittance of the gain defect mode is obtained thousands times in a special angle of incidence.
参考文献

[1] E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

[2] Zhu S Y, Liu N H, Zheng H, et al.. Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures[J]. Opt Commun, 2000, 174(1-4): 139-144.

[3] Hua L N, Yao Z S, Hong C, et al.. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersine defect[J]. Phys Rev E, 2002, 65(4): 046607.

[4] Centini M, Sibilia C, Scalora M, et al.. Dispersive properties of finite,one-dimensional photonic band-gap structures: Applications to nonlinear quadratic interactions[J]. Phys Rev E, 1999, 60(4): 4891-4898.

[5] 方云团, 沈廷根, 谭锡林. 一维光子晶体掺杂缺陷模研究[J]. 光学学报, 2004, 24(11): 1557-1560.

    Fang Yuntuan, Shen Tingeng, Tan Xilin. Study on one-dimensional photonic crystal with impurity defects[J]. Acta Optica Sinica, 2004, 24(11): 1557-1560.

[6] 蒋美萍, 王旭东, 巢小刚, 等. 准周期结构一维光子晶体的带隙特性与滤波特性[J]. 量子电子学报, 2005, 22(6): 884-888.

    Jiang Meiping, Wang Xudong, Chao Xiaogang, et al.. Band gap structure and filter properties of with quasiperiods one dimensional photonic crystals[J]. Chinese Journal of Quantum Electronics, 2005, 22(6): 884-888.

[7] 欧阳征标, 朱骏, 李景镇. 两端有慢变结构的光子晶体的能带特性研究[J]. 光学学报, 2002, 22(5): 612-615.

    Ouyang Zhengbiao, Zhu Jun, Li Jingzhen. Photonic bandgaps in photonic crystals with tapered periods at both ends[J]. Acta Optica Sinica, 2002, 22(5): 612-615.

[8] 王宏, 欧阳征标, 韩艳玲, 等. 含色散介质的一维光子晶体微腔的光学特性和模式调节[J]. 光学学报, 2007, 27(5): 940-945.

    Wang Hong, Ouyang Zhengbiao, Han Yanlin, et al.. Optical properties and mode tuning of defect modes in one- dimensional photonic crystal micro-cavity containing dispersive medium[J]. Acta Optica Sinica, 2007, 27(5): 940-945.

[9] Wu X Y, Zhang B J, Yang J H, et al.. Function photonic crystals[J]. Physica E, 2011, 43(9): 1694-1700.

[10] 巴诺. 一维函数型光子晶体的光学传输特性[J]. 中国激光, 2012, 39(6): 0606001.

    Ba Nuo. Light transmission properties of one-dimensional function photonic crystals[J]. Chinese J Lasers, 2012, 39(6): 0606001.

[11] 王光怀, 王清才, 吴向尧, 等. 一维函数光子晶体的研究[J].物理学报, 2012, 61(13): 134208.

    Wang Guanghuai, Wang Qingcai, Wu Xiangyao, et al.. Research on one-dimensional function photonic crystals[J]. Acta Phys Sin, 2012, 61(13): 134208.

[12] Wu X Y, Zhang B J, Yang J H, et al.. The characteristic of light transmission of function photonic crystals[J]. Physica E, 2012, 44(7): 1223-1229.

[13] 王筠, 刘丹, 刘勇, 等. 含色散负折射率缺陷一维Sinc函数型光子晶体的光学传输特性[J]. 中国激光, 2014, 41(4): 0406001.

    Wang Yun, Liu Dan, Liu Yong, et al.. Light transmission properties of one-dimensional Sinc function photonic crystals containing a dispersive defect layer with negative refractive index[J]. Chinese J Lasers, 2014, 41(4): 0406001.

[14] 王筠. 一维Sinc函数型光子晶体塔姆态的带隙研究[J]. 激光与光电子学进展, 2014, 51(10): 101603.

    Wang Yun. Tamm states bandgap of one-dimensional Sinc function photonic crystals[J]. Laser & Optoelectronics Progress, 2014, 51(10): 101603.

王筠. 色散缺陷对Sinc函数型光子晶体带隙的影响[J]. 中国激光, 2015, 42(4): 0406001. Wang Yun. Effect of Dispersive Defect on Bandgap of One-Dimensional Sinc Function Photonic Crystals[J]. Chinese Journal of Lasers, 2015, 42(4): 0406001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!