光学学报, 2016, 36 (2): 0230001, 网络出版: 2016-01-25   

基于短波红外成像光谱仪的矿石光谱测量

Mineral Spectrum Measurement Based on Shortwave Infrared Imaging Spectrometer
孙慈 1,*姚雪峰 1,2崔继承 1尹禄 1,2杨晋 1,2
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了实现对不同矿物成分的识别,研制了一台用于矿石光谱分析的短波红外成像光谱仪,并基于此台仪器获取了多种矿石的图像信息和光谱信息。阐述了设计原理,并对整个系统的光学设计结果进行了成像质量分析。采用单色准直光法对该系统进行了测试,得到各光谱通道的中心波长以及光谱分辨率等光谱性能参数,测试结果显示,该仪器光谱分辨率优于10 nm,满足应用需求。利用研制出的成像光谱仪对岩石样品进行了实验,并对获得的光谱曲线进行了光谱分析。实验分析结果表明,该仪器具有良好的性能,能够较为准确地判断不同矿石。设计的短波红外成像光谱仪具有高分辨率、结构简单、小型化、重量轻等优点,便于机载成像,有益于其在地质勘探领域的应用。
Abstract
In order to achieve the identification of different mineral compositions, a shortwave infrared imaging spectrometer for spectral analysis of the ore are developed. Based on this instrument, the image information and spectral information of the various minerals are obtained. The design principle of imaging spectrometer is described and image quality of the entire system is analyzed based on the result of optical design. The system performance is tested using monochromatic collimated light method and the center wavelength and spectral resolution for each spectral channel are obtained. Test results show that the spectral resolution is better than 10 nm which meets the application requirements. The rock samples are tested using the developed imaging spectrometer and the spectral curves of rock are obtained for spectral analysis. The experimental results show that the imaging spectrometer can identify different components of ore with high accuracy. The new designed shortwave infrared imaging spectrometer has the advantages of high resolution, simple structure, small size, light weight which is facilitate the application in airborne imaging, and it is useful for the application in geological exploration.
参考文献

[1] 薛庆生, 段民征. 用于大气痕量气体探测的临边成像光谱仪[J]. 光学学报, 2013, 33(5): 0522001.

    Xue Qingsheng, Duan Minzheng. Development of limb imaging spectrometer for atmospheric trace gas sounding[J]. Acta Optica Sinica, 2013, 33(5): 0522001.

[2] 刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学精密工程, 2012, 20(1): 52-57.

    Liu Yujuan, Cui Jicheng, Bayanheshig, et al.. Design and application of imaging spectrometer with convex grating[J].Optics and Precision Engineering, 2012, 20(1): 52-57.

[3] 陈少杰, 巴音贺希格, 潘明忠, 等. 中阶梯光栅光谱仪快速设计与谱图分析的数学模型[J]. 光学学报, 2013, 33(10): 1030001.

    Chen Shaojie, Bayanheshig, Pan Mingzhong, et al.. Efficient algorithms for echelle spectrograph design and cross-dispersed spectra analysis [J]. Acta Optica Sinica, 2013, 33(10): 1030001.

[4] 任重, 刘国栋, 黄振. 一种体相位全息透射式光栅的光谱仪分光系统[J]. 中国激光, 2015, 42(6): 0608004.

    Ren Zhong, Liu Guodong, Huang Zhen. A spectrometer splitting-light system based on volume phase holographic transmission grating [J]. Chinese J Lasers, 2015, 42(6): 0608004.

[5] 易维宁, 陆亦怀, 罗明. 地物光谱数据库及其在遥感中的应用[J]. 光电子技术与信息, 1998, 11(5) : 25-27.

    Yi Weining, Lu Yihuai, Luo Ming. Ground object spectra database and it′s applications in remote sensing [J].Optoelectronic Technology &Information, 1998, 11(5) : 25-27.

[6] A R Gillespie. Lithologic mapping of silicate rocks using TIMS[J]. California Institute of Technology, 1985, N87: 29-44.

[7] Veronika Kopacková, Stephane Chevrel, Anna Bourguignon. Spectroscopy as a tool for geochemical modeling[C]. SPIE, 2011, 8181: 818106.

[8] Fumio Yamazaki, Konomi Hara, Liu Wen. Urban land-cover classification based on airborne hyperspectral data and field observation [C]. SPIE, 2014, 9244: 92440P.

[9] Gan Fuping, Wang Runsheng, Ma Ainai. Spectral identification tree (SIT) for mineral extraction using AVIRIS data[C]. SPIE,2003, 4897: 203-210.

[10] A K Fred, J W Boardman, A B Lefkoff, et al.. The 1999 AIG/HyVista HyMap group shoot: commercial hyperspectral sensing is here[C]. SPIE, 2000, 4049: 201-217.

[11] Du Peijun, Tan Kun, Su Hongjun. Feature extraction for target identification and image classification of OMIS hyperspectral image[J]. Mining Science and Technology, 2009, 19(6): 835-841.

[12] 刘庆生, 刘素红, 燕守勋, 等. 利用对应分析方法从MAIS数据提取内蒙古哈达门沟含金矿化带[J]. 地质科学, 2000, 35(1): 91- 95.

    Liu Qingsheng, Liu Suhong, Yan Shouxun, et al.. Extract the auriferous alteration zones from MAIS data in the Hadamengou gold ore deposit[J]. Scientia Geological Sinica, 2000, 35(1): 91-95.

[13] Shu Rong, Xue Yongqi, Yang Yide.Calibration and application of airborne pushbroomhyperspectralimager (PHI)[J]. SPIE, 2004, 5234: 668-675.

[14] 金锡哲, 禹秉熙. Sagnac型干涉成像光谱仪外场干涉成像光谱实验[J]. 遥感学报, 2004, 8(1): 493-498.

    Jin Xizhe, Yu Bingxi. Field Fourier transform spectral imaging experiment of Sagnac type imaging Fourier transform spectrometer[J]. Journal of Remote Sensing, 2004, 8(1): 493-498.

[15] 张萌, 赵慧洁, 李娜. 高光谱数据光谱分辨率对矿物识别的影响分析[J]. 红外与激光工程, 2006, 35(s): 1-12.

    Zhang Meng, Zhao Huijie, Li Na. Analysis of the influence of hyperspectral spectral resolution on the mineral recognition[J]. Infrared and Laser Engineering, 2006, 35(s): 1-12.

[16] 王润生. 遥感地质技术发展的战略思考[J]. 国土资源遥感, 2008, (1): 1-12.

    Wang Runsheng. On the development strategy of remote sensing technology in geology[J]. Remote Sensing for Land and Resources, 2008, (1): 1-12.

[17] Hunt G R. Near-infrared (1.3 μm-2.4 μm)spectral of alteration minerals-potential for use in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1979, 44(12): 1974-1986.

孙慈, 姚雪峰, 崔继承, 尹禄, 杨晋. 基于短波红外成像光谱仪的矿石光谱测量[J]. 光学学报, 2016, 36(2): 0230001. Sun Ci, Yao Xuefeng, Cui Jicheng, Yin Lu, Yang Jin. Mineral Spectrum Measurement Based on Shortwave Infrared Imaging Spectrometer[J]. Acta Optica Sinica, 2016, 36(2): 0230001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!