量子电子学报, 2014, 31 (1): 107, 网络出版: 2014-02-26   

单量子阱InGaN/GaN势垒高度与LED光电性能关系研究

Relationship between barrier height of single quantum well InGaN/GaN and LED photoelectric performance
作者单位
1 总参谋部第六十研究所, 江苏 南京 210016
2 华南师范大学信息光电子科技学院, 广东 广州 510631
摘要
通过对Inx Ga1-x N掺杂不同组份的In来改变Inx Ga1-x N的禁带宽度,从 而改变量子阱势垒高度,并研究其与发光二极管光电性能、效率下降之间的关系。通过仿真模拟实验研究了不同量子阱势垒高度 与InGaN/GaN量子阱发光二极管的功率光谱密度、内量子效率、发光功率及复合率之间的关系。分析结果表明: 1) In含量与 发光二极管的光电性能并非成线性关系。2) 在电流密度较低时, In组份越小,光谱密度峰值越大,发光功率越大。3) 在电流 密度较大时, In组份越大,光谱密度峰值越大,发光功率越大。4) 光谱蓝移与电流密度大小紧密相关, 电流密度大的蓝移程度大,反之越小。因此,应根据不同的电流密 度来选择In组份的大小,从而提高发光效率。
Abstract
Band gap of the Inx Ga1-x N was changed by doping with different concentrations of In content for changing the quantum well barrier height. The relationship between the type of barrier height and the power spectral density, internal quantum efficiency, light emitting power and recombination rate of the InGaN/GaN quantum well light-emitting diode was researched. The analysis results showed as follows: 1) In content of the light-emitting diode and optical properties is not a linear relationship. 2) When the current density is low, the smaller the In content, the greater the peak of the spectral density and power of the light emitting. 3) However, when the current density is larger, the greater the In content, the greater the peak of the spectral density and power of the light emitting. 4) The blue-shift associates with the size of the current density, when current density is large, blue-shift is big, the smaller the contrary. Therefore, the content of In should be selected according to the type of current density so as to improve the luminous efficiency.
参考文献

[1] Kioupakis E, Rinke P, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes [J]. Appl. Phys. Lett., 2011, 98(16): 161107-1-3.

[2] Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence [J]. Appl. Phys. Lett., 2007, 91(14): 141101-1-3.

[3] Delaney K T, Rinke P, et al. Auger recombination rates in nitrides from first principles [J]. Appl. Phys. Lett., 2009, 94(19): 191109-1-3.

[4] Galler B, Drechsel P, Monnard R, et al. Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates [J]. Appl. Phys. Lett., 2012, 101(13): 131111-1-4.

[5] Mao A, Jaehee C, et al. Reduction of efficiency droop in GaInN/GaN light-emitting diodes with thick AlGaN cladding layers [J]. Electr. Mater. Lett., 2012, 8(1): 1-4.

[6] Lang J R, Young N G, Farrell R M, et al. Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells [J]. Appl. Phys. Lett., 2012, 101(18): 181105-1-4.

[7] Liu M L, Ye Z Q, Lei M S. Efficiency droop in blue InGaN/GaN single-quantum-well light-emitting diodes on the Si substrate [J]. Semiconductor Science and Technology, 2012, 27(4): 045010.

[8] Piprek J, et al. Sensitivity analysis of electron leakage in III-nitride light-emitting diodes [J]. Appl. Phys. Lett., 2013, 102(13): 131103-1-4.

[9] Davies M J, Badcock T J, Dawson P, et al. High excitation carrier density recombination dynamics of InGaN/GaN quantum well structures: Possible relevance to efficiency droop [J]. Appl. Phys. Lett., 2013, 102(2): 022106-1-3.

[10] Wang C H, Ke C C, Lee C Y, et al. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Appl. Phys. Lett., 2010, 97(26): 261103-1-3.

[11] Hwang S Y, Ha W J, Kim J K, et al. Promotion of hole injection enabled by GaInN/GaN light-emitting triodes and its effect on the efficiency droop [J]. Appl. Phys. Lett., 2011, 99(18): 181115-1-3.

[12] Wang C K, Chiang T H, Chen K Y, et al. Investigating the effect of piezoelectric polarization on GaN-based LEDs with different quantum barrier thickness [J]. Journal of Display Technology, 2013, 9(4): 207-211.

[13] Ryu H Y. Effect of internal polarization fields in InGaN/GaN multiple-quantum wells on the efficiency of blue light-emitting diodes [J]. Japanese Journal of Applied Physics, 2012, 51(9): 09MK03-1-4.

[14] Hammersley S, Watson-Parris D, Dawson P, et al. The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures [J]. Journal of Applied Physics, 2012, 111(8): 083512-1-6.

[15] Shmidt N, Andrew G, et al. Mechanisms behind efficiency droop and degradation in InGaN/GaN LEDs [J]. Physica Status Solidi (C), 2013, 10(3): 332-334.

[16] Jiang R, Lu H, Chen D J, et al. Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes [J]. Chin. Phys. B, 2013, 22(4): 047805.

[17] Wang J X, Wang L, Zhao W, et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization [J]. Appl. Phys. Lett., 2010, 97(20): 201112-1-3.

[18] An Panlong, et al. Quantum tunneling properties and realization in low-biased well of wells structures [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(5): 629-634 (in Chinese).

[19] Son J H, Lee J L. Strain engineering for the solution of efficiency droop In InGaN/GaN light-emitting diodes [J]. Opt. Expr., 2010, 18(6): 5466-5469.

[20] Danhof J, Schwarz U T, Meyer T, et al. Local internal quantum efficiency of a green light emitting InGaN/GaN quantum well [J]. Physica Status Solidi (B), 2012, 249(3): 600-603.

[21] Langer T, Andreas K, et al. Origin of the‘green gap’: Increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures [J]. Physica Status Solidi (C), 2011, 8(7-8): 2170-2172.

[22] Piprek J. Semiconductor Optoelectronic Devices [M]. San Diego: Academic Press, 2003: 193.

[23] Vurgaftman I, Meye J R. Band parameters for nitrogen-containing semiconductors [J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

[24] Song J J, Zhang Y Y, Zhao F, et al. Effect of the number of quantum wells on InGaN/AlGaN LED [J]. Chinese Journal of Luminescence (发光学报), 2012, 33(12): 1368-1372 (in Chinese).

张大庆, 李国斌, 陈长水. 单量子阱InGaN/GaN势垒高度与LED光电性能关系研究[J]. 量子电子学报, 2014, 31(1): 107. ZHANG Da-qing, LI Guo-bin, CHEN Chang-shui. Relationship between barrier height of single quantum well InGaN/GaN and LED photoelectric performance[J]. Chinese Journal of Quantum Electronics, 2014, 31(1): 107.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!