光子学报, 2014, 43 (8): 0816001, 网络出版: 2014-09-01   

金刚石线锯切割多晶硅片表面特性与酸刻蚀制绒问题

The Surface Characteristics of Diamond Wire Sawn Multicrystalline Silicon Wafers and Their Acidic Texturization
作者单位
南昌大学 太阳能光伏学院, 南昌 330031
摘要
为解决金刚石切割多晶硅片与常规HF-HNO3-H2O混合酸湿法制绒技术不兼容的问题, 对金刚石切割多晶硅片的表面特性和大幅度提高混合酸溶液中HF的比例进行了刻蚀制绒实验.结果表明, 金刚石线切割多晶硅片表面存在约33%的光滑条带区域, 其余为与砂浆切割硅片表面相近的粗糙崩坑区域;这些光滑区域使得金刚石切割多晶硅片表面光反射率比砂浆切割多晶硅片高3%~4%;而且光滑区域在富HNO3和富HF的HF-HNO3-H2O混合酸溶液中均较难于腐蚀, 使其刻蚀制绒后反射率比砂浆切割多晶硅片低1%~2%, 制绒后的金刚石切割多晶硅片反射率比制绒后的砂浆切割多晶硅片高4%~6%, 不能满足太阳电池生产要求.富HNO3和富HF两种酸刻蚀体系, 均不能解决金刚石切割多晶硅片的制绒问题.
Abstract
In order to solve the incompatibility problems between the diamond cut multicrystalline silicon wafer and the currently used HNO3-rich HF-HNO3-H2O acidic wet etching technology, the surface feature of diamond cut multicrystalline silicon wafers was investigated, and the acidic etching was revealed aimed to improve the acidic texture of diamond cut multicrystalline silicon wafers by greatly increase the proportion of HF in the mixed acid solution. The results show that, diamond cut silicon surfaces have about 33% smooth band areas, with the rest of surface being pits of cracking and spalling, similar to the surfaces of slurry cut silicon wafers. These smooth areas leads to 3%~4% higher light reflectivity as compared to the slurry cut multicrystalline silicon wafers. The smooth area is relatively difficult to etch in both HNO3-rich and HF-rich HF-HNO3-H2O mixed acid solution, making the light reflectivity reduction 1%~2% lower than the slurry cut wafers, after the acidic etching. The final light reflectivity of the acidic wet textured diamond cut multicrystalline silicon wafers is thus 4%~6% higher than the similarly textured slurry cut multicrystalline silicon wafers, which is not low enough for solar cell application. Both HNO3-rich and HF-rich etching systerm, can not solve the problem of etching diamond wire saw multicrystalline silicon wafers.
参考文献

[1] CAI E, TANG B, FAHRNER W R, et al. Characterization of the surfaces generated by diamond cutting of crystalline silicon [C].Conference and Exhibition 2011, Hamburg, Germany, 2011: 1884-1886.

[2] CHEN C C A, CHAO P H. Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells[J]. Advanced Materials Research, 2010, 126: 177-180.

[3] 杜红文,席珍强. 固结磨粒金刚石线锯技术的研究[J]. 现代制造工程, 2010,6: 99-101.

    DU Hong-wen, XI Zhen-qiang. The research of fixed abrasive diamond wire saw technology[J].Modern Manufacturing Engineering, 2010, 6: 99-101.

[4] 蔡二辉,汤斌兵, 周剑, 等. 晶体 Si 片切割表面损伤及其对电学性能的影响[J]. 半导体技术,2011, 36(8): 614-618.

    CAI Er-hui, Tang Bin-bing, ZHOU Jian, et al. Surface damage of crystalline silicon wafers and their effects on electrical properties[J]. Semiconductor Technology, 2011, 36(8): 614-618.

[5] WATANABE N, KONDO Y, ZDE D. Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 485-490.

[6] HOLT A, THOGERSEN A, ROHR C, et al. Surface structure of mono-crystalline silicon wafers produced by diamond wire sawing and by standard slurry sawing before and after etching in alkaline solutions[C]. In Photovoltaic Specialists Conference, 35th IEEE, 2010.

[7] YU X, WANG P, LI X, et al, Thin Czochralski silicon solar cells based on diamond wire sawing technology[J]. Solar Energy Materials and Solar Cells, 2011, 98: 337-342.

[8] 蔡二辉, 晶体硅的金刚石线锯切割性能研究[D]. 南昌: 南昌大学,2011.

    CAI Er-hui. Study on the performance of diamond wire saw cutting of crystalline silicon[D]. Nanchang: Nanchang University.

[9] BIDIVILLE A, WASMER K, KRAFT R, et al. Diamond wire-sawn silicon wafers-from the lab to the cell production[C]. 24th European Photovolatic Solar Energy Coference And Exhibition, 2009.

[10] MEINEL B, KOSCHWITZ T, ACKER J. Textural development of SiC and diamond wire sawed sc-silicon wafer[J]. Energy Procedia, 2012, 27: 330-336.

[11] XIAO G E. Electrochemistry of silicon and its oxide[M].New York: Kluwer Academic/Plenum Publisher, 2001: 245-259.

[12] 徐华天,冯仕猛, 单以洪, 等. 多晶硅表面暗纹的形成以及消除技术研究[J]. 半导体光电, 2012,33(5): 690-693+714.

    XU Hua-tian, FENG Shi-meng, SHAN Yi-hong, et al. Eliminating deep ditches on textured multi-crystalline silicon surfaces[J]. Semiconductor Optoelectronic, 2012, 33(5): 690-693+714.

[13] 张发云, 叶建雄.多晶硅表面酸腐蚀制备绒面研究[J]. 光子学报, 2011,40(2): 222-226.

    ZHANG Fa-yun, YE Jian-xiong. Texturomg of multicrystalline silicon with acidic etching[J]. Acta Photonica Sinica, 2011, 40(2): 222-226.

[14] 滕繁,刘志凌, 彭欢, 等.酸腐蚀多晶硅表面的光反射率计算[J]. 太阳能学报, 2009, 30(10): 1039-1042.

    TENG Fan, LIU Zhi-ling, PENG Huan, et al. Light reflectivity calculation of acid corrosion surface of multicrystalline silicon[J]. Acta Energiae Solaris Sinica, 2009, 30(10): 1039-1042.

刘小梅, 李妙, 陈文浩, 周浪. 金刚石线锯切割多晶硅片表面特性与酸刻蚀制绒问题[J]. 光子学报, 2014, 43(8): 0816001. LIU Xiao-mei, LI Miao, CHEN Wen-hao, ZHOU Lang. The Surface Characteristics of Diamond Wire Sawn Multicrystalline Silicon Wafers and Their Acidic Texturization[J]. ACTA PHOTONICA SINICA, 2014, 43(8): 0816001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!