人工晶体学报, 2020, 49 (10): 1787, 网络出版: 2021-01-09  

碳化硅邻晶面外延生长机制的动力学蒙特卡罗模拟

Epitaxial Growth Mechanism of SiC on the Vicinal Surface Simulated by Kinetic Monte Carlo
作者单位
1 青海民族大学化学化工学院,西宁 810007
2 青海民族大学能源与动力工程系,西宁 810007
3 西安交通大学能源与动力工程学院,西安 710049
摘要
用动力学蒙特卡罗方法研究了3C-SiC(111)邻晶面的外延生长机制。生长温度、沉积速率和平台宽度对邻晶面外延生长模式有着重要的影响。模拟结果显示:在温度较低的情况下,晶体表面离散的分布着数量众多的晶核,其生长模式为二维岛核生长模式。当生长温度升高时,岛核主要分布于台阶边缘,晶体生长方式则转变为台阶推进与岛核成长共生的生长模式。其次,在沉积速率较低时,晶体主要生长方式为台阶推进模式,随着沉积速率增加, 晶体生长模式则转变为二维岛核生长模式。最后,岛核密度随平台宽度的增加而增加,在较低温度下,平台宽度对岛核密度的影响更加明显。
Abstract
A kinetic Monte Carlo model has been developed to study mechanism of growth patterns on 3C-SiC(111) vicinal surface. The growth temperature, deposition rate and terrace width have great influence on the growth mechanism of the vicinal surface. The simulation result show that many islands are nucleated on the vicinal surface at low temperature and the crystal grows mainly by island nucleation. When the temperature increases, the islands are distribute in the edge of steps. As a result, the growth patterns are changed to mixed growth patterns. Secondly, the growth patterns are dominated by step flow growth at low deposition rate and two-dimensional nucleation growth regimes are dominated as the deposition rate increases. Finally, with the terrace width decreases adatoms preferentially attach to steps instead of nucleating new islands and the growth system crosses over from nucleation-dominated growth to step flow-dominated growth models.
参考文献

[1] 刘 兵,蒲红斌,赵 然,等.高品质6英寸N型4H-SiC单晶生长研究[J].人工晶体学报,2020,49(4): 570-575.

[2] 李 源,石爱红,孙彩华,等. SiC晶体生长中气相组分输运特性[J].人工晶体学报,2018,47(11): 2260-2264.

[3] 王堋人,苟燕子,王 浩.第三代SiC纤维及其在核能领域的应用现状[J].无机材料学报,2020,35(5): 525-531.

[4] Kimoto T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351.

[5] 朱 阁,卢贵武,李英峰,等.晶体生长机制和生长动力学的蒙特卡罗模拟研究[J].人工晶体学报,2006,35(1): 24-31.

[6] 张佩峰,郑小平,贺德衍,等.计算机模拟在薄膜外延生长中的应用[J].兰州大学学报,2006(3): 89-95.

[7] Krzyz·ewski F, Zauska-Kotur M A. Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface[J]. Journal of Applied Physics, 2014, 115(21): 213517.

[8] Guo H, Huang W, Liu X, et al. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations [J]. AIP Advances, 2014, 4(9): 097106.

[9] 李 源,石爱红,陈国玉,等.基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理[J].物理学报,2019,68(7): 268-275.

[10] Chen X, Li Y. Stepped morphology on vicinal 3C- and 4H-SiC (0001) faces: a kinetic Monte Carlo study [J]. Surface Science, 2019, 681:18-23.

[11] Li Y, Chen X J, Su J. Study on formation of step bunching on 6H-SiC (0001) surface by kinetic Monte Carlo method[J]. Applied Surface Science, 2016, 371: 242-247.

[12] Rusanen M, Koponen I T, Kallunki J. Mixing length scales: step meandering and island nucleation on vicinal surfaces[J]. European Physical Journal B, 2003, 36(1): 141-147.

[13] Bales G S. Crossover scaling during submonolayer epitaxy onvicinal substrates[J]. Surface Science, 1996, 356(1-3): L439-L444.

[14] Li Y, Chen X, Su J. Effect of nucleation on instability of step meandering during step-flow growth on vicinal 3C-SiC (0001) surfaces[J]. Journal of Crystal Growth, 2017, 468(Supplement C): 28-31.

[15] Krzyz·ewski F. 4H-SiC surface structure transitions during crystal growth following bunching in a fast sublimation process[J]. Journal of Crystal Growth, 2014, 401: 511-513.

[16] Hoshen J, Kopelman R. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm[J]. Physical Review B, 1976, 14(8): 3438-3445.

[17] Kundin J, De Cuba M R, Gemming S, et al. Two-scale modeling of adsorption processes at structured surfaces[J]. Physica D: Nonlinear Phenomena, 2009, 238(2): 117-125.

[18] Kundin J, Yürüdü C, Ulrich J, et al. A phase-field/Monte-Carlo model describing organic crystal growth from solution[J]. The European Physical Journal B, 2009, 70(3): 403-412.

[19] Han Y, Gaudry , Oliveira T J, et al. Point island models for nucleation and growth of supported nanoclusters during surface deposition[J]. The Journal of Chemical Physics, 2016, 145(21): 211904.

[20] Posthuma De Boer J, Ford I J, Kantorovich L, et al. Phase-field method for epitaxial kinetics on surfaces[J]. The Journal of Chemical Physics, 2018, 149(19): 194107.

[21] Battaile C C. The Kinetic Monte Carlo method: Foundation, implementation, and application[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(41-42): 3386-3398.

[22] Camarda M, La Magna A, La Via F. A Kinetic Monte Carlo method on super-lattices for the study of the defect formation in the growth of close packed structures [J]. Journal of Computational Physics, 2007, 227(2): 1075-1093.

石爱红, 李源, 艾文森. 碳化硅邻晶面外延生长机制的动力学蒙特卡罗模拟[J]. 人工晶体学报, 2020, 49(10): 1787. SHI Aihong, LI Yuan, AI Wensen. Epitaxial Growth Mechanism of SiC on the Vicinal Surface Simulated by Kinetic Monte Carlo[J]. Journal of Synthetic Crystals, 2020, 49(10): 1787.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!