光子学报, 2018, 47 (3): 0301002, 网络出版: 2018-02-01   

机载激光测深雷达中大动态范围信号的多通道处理技术

Multi-channel Processing Technology for Wide Dynamic Range Signal in Airborne Lidar Bathymetry
作者单位
1 天津大学 微电子学院, 天津 300072
2 天津市成像与感知微电子技术重点实验室, 天津 300072
3 天津市红外成像技术工程中心, 天津 300072
摘要
为实现大动态范围信号的有效接收, 设计了一种三路并行的信号处理架构, 分别设置为低、中、高三种不同增益, 以实现不同水深下不同幅度的回波信号处理.同时利用数据拼接方法以及一种基于五角函数和高斯函数组合的拟合算法综合处理三路数据并进行水深评估.基于Wa-LID回波仿真模型得到回波数据, 验证多路并行处理架构的实用性.仿真结果表明, 本文提出的多通道处理技术可测信号的动态范围达86.9 dB, 对应的最大测深为26 m, 测量偏差为1.6 cm 至4.7 cm, 标准差小于1.1 cm.可有效应用于机载激光雷达测深系统.
Abstract
Three-channel processing structure was proposed to extend the input dynamic range. Each channel is set up with low, middle or high gain according to the echo intensity from different water depth. Afterwards, a data stitching method and a new fitting approach with the combination of pentagonal and Gaussian function are applied to each three-channel waveform to estimate the depth of water. The multi-channel processing structure was verified on the simulated data sets obtained from the existing Wa-LID waveform simulator. The simulated result has shown that the effective input signal is up to 86.9 dB dynamic range in this new processing technique, and the measured depth reaches 26 m. The bias of the bathymetry estimates is ranging from 1.6 to 4.7 cm with the standard deviation better than 1.1 cm. This multi-channel processing technology can be effectively used in ALB.
参考文献

[1] BAILLY J S, LE COARER Y, LANGUILLE P, et al. Geostatistical estimations of bathymetric LiDAR errors on rivers[J]. Earth Surface Processes and Landforms, 2010, 35(10): 1199-1210.

[2] PAN Z, GLENNIE C, HARTZELL P, et al. Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry[J]. Remote Sensing, 2015, 7(5): 5133-5159.

[3] JASINSKI M F, STOLL J D, COOK W B, et al. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL)[J]. Journal of Coastal Research, 2016, 76(sp1): 44-55.

[4] ZHAO J, ZHAO X, ZHANG H, et al. Improved model for depth bias correction in airborne LiDAR bathymetry systems[J]. Remote Sensing, 2017, 9(7): 710.

[5] IRISH J L, MCCLUNG J K, LILLYCROP W J. Airborne lidar bathymetry: the SHOALS system[R]. US Army Engineer District-Mobile Mobile United States, 2016.

[6] GRIFFITHS D J, WICKS A. High speed high dynamic range video[J].IEEE Sensors Journal, 2017, 17(8): 2472-2480.

[7] COSSIO T, SLATTON K C, CARTER W, et al. Predicting topographic and bathymetric measurement performance for low-SNR airborne lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2298-2315.

[8] LIN W T, SHIH P T Y, CHEN J C, et al. Bathymetric LiDAR green channel derived reflectance: an experiment from the dongsha 2010 mission[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2016, 27(4): 565-576.

[9] SAYLAM K, BROWN R A, HUPP J R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 191-200.

[10] EREN F, PE′ERI S, RZHANOV Y. Airborne Lidar Bathymetry (ALB) waveform analysis for bottom return characteristics[C]. SPIE Defense+ Security. International Society for Optics and Photonics, 2016: 98270H-98270H-6.

[11] BIRKEBAK M. Airborne lidar bathymetry beam diagnostics using an underwater optical detector array[D]. University of New Hampshire, 2017.

[12] KOTILAINEN A T, KASKELA A M. Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone[J]. Marine Geology, 2017, 385(1): 250-259.

[13] MOHAMED H, SALAH M, NADAOKA K, et al. Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models[J]. Arabian Journal of Geosciences, 2017, 10(2): 42.

[14] ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD: A new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744-748.

[15] ABADY L, BAILLY J S, BAGHDADI N, et al. Assessment of quadrilateral fitting of the water column contribution in Lidar waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 813-817.

[16] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1): 202-216.

李杰, 赵毅强, 叶茂, 胡凯, 谢绍禹, 薛文佳, 周国清. 机载激光测深雷达中大动态范围信号的多通道处理技术[J]. 光子学报, 2018, 47(3): 0301002. LI Jie, ZHAO Yi-qiang, YE Mao, HU Kai, XIE Shao-yu, XUE Wen-jia, ZHOU Guo-qing. Multi-channel Processing Technology for Wide Dynamic Range Signal in Airborne Lidar Bathymetry[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0301002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!