红外与激光工程, 2018, 47 (9): 0920006, 网络出版: 2018-10-06  

γ射线辐照对130 nm部分耗尽SOI MOS器件栅氧经时击穿可靠性的影响

Effects of time-dependent dielectric breakdown reliability of 130 nm partially depleted SOI MOS devices exposed to γ-ray
马腾 1,2,3苏丹丹 1,2,3周航 1,2,3郑齐文 1,2崔江维 1,2魏莹 1,2余学峰 1,2郭旗 1,2
作者单位
1 中国科学院新疆理化技术研究所 中国科学院特殊环境功能材料与器件重点实验室, 新疆 乌鲁木齐 830011
2 新疆电子信息材料与器件重点实验室, 新疆 乌鲁木齐 830011
3 中国科学院大学, 北京 100049
摘要
研究了γ射线辐照对130 nm部分耗尽(Partially Depleted, PD)绝缘体上硅(Silicon on Insulator, SOI)工艺MOS器件栅氧经时击穿(Time-Dependent Dielectric Breakdown, TDDB)寿命的影响。通过测试和对比辐照前后NMOS和PMOS器件的转移特性曲线、阈值电压、关态泄漏电流以及TDDB时间等电参数, 分析了γ射线辐照对PD-SOI MOS器件TDDB可靠性的影响。结果表明: 由于γ射线辐照在栅极氧化层中产生了带正电的氧化物陷阱电荷, 影响了器件内部势垒的分布, 降低了电子跃迁的势垒高度, 导致了电子遂穿的正反馈作用增强, 从而缩短了器件栅氧化层经时击穿时间, 最终造成器件栅极氧化层的可靠性下降。
Abstract
The effects of γ-ray irradiation on the subsequent time-dependent dielectric breakdown (TDDB) of partially depleted (PD) silicon-on-insulator (SOI) MOS devices were investigated. By testing and comparing the transfer characteristic curves, threshold voltage, off-state leakage current, the TDDB lifetimes and other electrical parameters of the NMOS and PMOS devices before and after irradiation, the effects of γ-ray irradiation on the TDDB reliability of the devices were analyzed. The results show that the positively charged oxide trap charges induced by γ-ray irradiation in the gate oxide layer affected the distribution of the internal barrier of the device, and reduced the height of the barrier of the electron transition. Therefore, the positive feedback effect of electron tunneling is enhanced and the TDDB lifetime of the device is reduced, resulting in a reliability degradation of the gate oxide of the devices.
参考文献

[1] Sunè J, Wu E Y, Lai W L. Statistics of competing post-breakdown failure modes in ultrathin MOS devices[J]. IEEE Trans Electron Devices, 2006, 53(2): 224-234,.

[2] Zhou H, Cui J W, Zheng Q W, et al. Reliability of partially-depleted silicon on insulator n-channel metal oxide semiconductor field-effect transistor under the ionizing radiation environment[J]. Acta Phys Sin, 2015, 64(8):086107. (in Chinese)

[3] Silvestri M, Gerardin S, Paccagnella A, et al. Gate rupture in ultra-thin gate oxides irradiated with heavy ions[J]. IEEE Trans Nucl Sci, 2009, 56(4): 1964-1970.

[4] Cester A, Cimino S, Paccagnella A, et al. Accelerated wear-out of ultra-thin gate oxides after irradiation[J]. IEEE Trans Nucl Sci, 2003, 50(3): 729-734.

[5] Choi B K, Fleetwood D M, Schrimpf R D, et al. Long-term reliability degradation of ultrathin dielectric films due to heavy-ion irradiation[J]. IEEE Trans Nucl Sci, 2002, 49(6): 3045-3050.

[6] Suehle J S, Vogel E M, Roitman P, et al. Observation of latent reliability degradation in ultrathin oxides after heavy-ion irradiation[J]. Appl Phys Lett, 2002, 80(7):1282-1284.

[7] Fleetwood D M, Riewe L C, Winokur P S, et al. Dielectric breakdown of thin oxides during ramped current-temperature stress[J]. IEEE Trans Nucl Sci, 2002, 47(6): 2305-2310.

[8] Liu H X, Hao Y. Study on pulse stress enhanced hot-carrier effects in NMOSFET′s [J]. Acta Electronica Sinica, 2002, 30(5): 658-660. (in Chinese)

[9] He Y J, Zhang X W, Liu Y, et al. Total dose dependence of hot carrier injection effect in the n-channel metal oxide semiconductor devices[J]. Acta Phys Sin, 2016, 64(24):246101(1-7). (in Chinese)

[10] Denais M, Huard V, Parthasarathy C, et al. Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide[J]. IEEE Transactions on Device & Materials Reliability, 2005, 4(4): 715-722.

[11] Ceschia M, Paccagnella A, Cester A, et al. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides[J]. IEEE Transactions on Nuclear Science, 1998, 45(6): 2375-2382.

马腾, 苏丹丹, 周航, 郑齐文, 崔江维, 魏莹, 余学峰, 郭旗. γ射线辐照对130 nm部分耗尽SOI MOS器件栅氧经时击穿可靠性的影响[J]. 红外与激光工程, 2018, 47(9): 0920006. Ma Teng, Su Dandan, Zhou Hang, Zheng Qiwen, Cui Jiangwei, Wei Ying, Yu Xuefeng, Guo Qi. Effects of time-dependent dielectric breakdown reliability of 130 nm partially depleted SOI MOS devices exposed to γ-ray[J]. Infrared and Laser Engineering, 2018, 47(9): 0920006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!