红外与激光工程, 2016, 45 (6): 0624001, 网络出版: 2016-07-26   

受激辐射损耗超分辨成像技术研究

Super resolution imaging technology of stimulated emission depletion
作者单位
中国科学院苏州生物医学工程技术研究所 江苏省医用光学重点实验室, 江苏 苏州 215163
摘要
受激辐射损耗显微成像(STED)是一种超分辨荧光显微成像技术, 它能够突破传统光学衍射极限的限制, 把远场光学分辨率提高到百纳米以内, 被广泛应用于生物医学等领域, 是目前光学显微成像领域研究的热点之一。采用了一种基于超连续谱皮秒脉冲白激光光源的STED显微系统, 实现超分辨成像。并从精密合束、脉冲延迟和损耗光残留光强几个方面探讨系统优化, 从而获得最佳的成像效果。对直径约25 nm荧光微球成像实验的数据表明: 该系统成像分辨率可达约60 nm, 分辨能力远远高于衍射极限。另外, 系统成功实现了对核孔复合物、微管和微丝等一系列生物样品的超分辨成像, 共聚焦成像中某些模糊不清的结构在STED成像中清晰可辨。
Abstract
Stimulated emission depletion(STED) is a kind of super resolution fluorescence microscopy imaging technology. It can break through the traditional optical diffraction limit, and make the far field optical resolution improved to less than 100 nm, which is widely used in biomedical field, and becomes one of the hotspots in optical imaging research. A STED microscope system based on ultra-continuous spectrum picoseconds pulsed white laser source was introduced, and super-resolution imaging was realized. The optimized results were discussed from the aspects of precise collimation, pulse delay and residual intensity of the STED light, therefore the best imaging effect was obtained. The experiments data of the about 25 nm diameter fluorescent microspheres imaging shows that the resolution of the system is about 60 nm, which is much higher than the diffraction limit. In addition, the system succeeds in realizing super resolution imaging of nuclear pore complexes, microtubules and microfilaments and a series of biological samples. Some obscure structures imaged in confocal microscopy can be legible in STED imaging.
参考文献

[1] Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153-1158.

[2] Liu Y, Ding Y, Alonas E, et al. Achieving λ/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator[J]. PloS One, 2012, 7(6): e40003.

[3] Eggeling C, Hell S W. STED Fluorescence Nanoscopy[M]. Belin: Springer, 2014.

[4] Kuang C, Zhao W, Wang G. Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion[J]. Review of Scientific Instruments, 2010, 81(5): 053709.

[5] Nelson A J, Gunewardene M S, Hess S T. High speed fluorescence photoactivation localization microscopy imaging[C]//SPIE NanoScience+ Engineering. International Society for Optics and Photonics, 2014: 91690P-91690P-7.

[6] Achurra P, Holden S, Pengo T, et al. Super-Resolution Microscopy Techniques in the Neurosciences[M]. USA: Humana Press, 2014: 87-111.

[7] Klein T, Proppert S, Sauer M. Eight years of single-molecule localization microscopy[J]. Histochemistry and Cell Biology, 2014, 141(6): 561-575.

[8] Kim D, Bujny M, Zhuang X. Structural studies by correlative stochastic optical reconstruction microscopy and electron microscopy[J]. Biophysical Journal, 2014, 106(2): 606a.

[9] Endesfelder U, Heilemann M. Advanced Fluorescence Microscopy: Method and Protocols[M]. New York: Springer, 2015: 263-276.

[10] Tehrani K F, Xu J, Kner P A. Multi-color quantum dot stochastic optical reconstruction microscopy (qSTORM)[C]//SPIE, 2015, 9331: 93310C.

[11] D′Este E, Kamin D, G 觟ttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 2015, 10(8): 1246-1251.

[12] Honigmann A, Mueller V, Ta H, et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells[J]. Nature Communications, 2013, 5: 5412.

[13] Yu J Q, Yuan J H, Zhang X J, et al. Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope[J]. Chinese Science Bulletin, 2013, 58(33): 4045-4050.

[14] Westphal V, Hell S W. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys Rev Lett, 2005, 94: 143903.

[15] Harke B, Keller J, Ullal C K, et al. Resolution scaling in STED microscopy[J]. Opt Express, 2008, 16: 4154-4162.

[16] 于建强, 袁景和, 方晓红, 等. 受激辐射耗尽荧光显微镜的激发耗尽过程与空间分辨率计算[J]. 光学学报, 2010, 30(S1): 100405.

    Yu Jianqiang, Yuan Jinghe, Fang Xiaohong, et al. Effects of excitation and depletion process on resolution of stimulated emission depletion microscope[J]. Acta Optica Sinica, 2010, 30(S1): 100405. (in Chinese)

[17] Galiani S, Harke B, Vicidomini G, et al. Strategies to maximize the performance of a STED microscope[J]. Optics Express, 2012, 20(7): 7362-7374.

[18] Xi P, Xie H, Liu Y, et al. Optical nanoscopy with stimulated emission depletion[J]. Optical Nanoscopy and Novel Microscopy Techniques, 2014: 1-22.

[19] Yang X, Tzeng Y K, Zhu Z, et al. Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination[J]. Rsc Advances, 2014, 4(22): 11305-11310.

魏通达, 张运海, 杨皓旻. 受激辐射损耗超分辨成像技术研究[J]. 红外与激光工程, 2016, 45(6): 0624001. Wei Tongda, Zhang Yunhai, Yang Haomin. Super resolution imaging technology of stimulated emission depletion[J]. Infrared and Laser Engineering, 2016, 45(6): 0624001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!