周瑶 1,2费鹏 1,2,*
作者单位
摘要
1 华中科技大学光学与电子信息学院,湖北 武汉 430074
2 湖北省高端生物医学成像重大科技基础设施,湖北 武汉 430074
近几十年来,光片荧光显微镜作为荧光显微技术的一种革新,显著提升了生命科学研究中对组织与细胞结构和功能的高时空分辨率成像能力。相较于传统的落射荧光显微技术,光片显微镜通过选择性逐层照明生物样本,大大提高了光子利用效率,降低了光毒性,并显著提升了成像速度。光片显微镜问世以来,其在生命科学研究中的应用范围逐渐拓宽,从胚胎学、神经科学到肿瘤研究等多个领域均有所涉及,不仅可用于观察细胞和组织的基本结构,还可用于实时监测生物过程中的动态变化。同时,其跨尺度的特点使其适用于从宏观到微观的多个尺度上的观察。本文综述了光片显微镜在高通量成像、超分辨成像以及易用性方面的应用及发展,旨在为生命科学研究人员提供全面的了解和参考,推动光片显微镜在更多领域的应用和发展。
荧光显微成像 光片荧光显微镜 高通量成像 超分辨成像 
激光与光电子学进展
2024, 61(6): 0618019
作者单位
摘要
1 西安电子科技大学 物理学院,陕西 西安 710071
2 西安电子科技大学杭州研究院,浙江 杭州 311200
荧光显微镜具有对样品损伤小、可特异性成像等优点,是生物医学研究的主流成像手段。随着人工智能技术的快速发展,深度学习在逆问题求解中取得了巨大成功,被广泛应用于诸多领域。近年来,深度学习在荧光显微成像中的应用掀起了一个研究热潮,为荧光显微技术发展提供了性能上的突破与新思路。基于此,首先介绍了深度学习的基本网络模型,然后对基于深度学习的荧光显微成像技术在荧光显微的空间分辨率、图像采集及重建速度、成像通量和成像质量提升方面的应用进行阐述。最后,对目前深度学习在荧光显微成像中的研究进行总结与展望。
荧光显微成像 深度学习 超分辨 超分辨显微成像 图像重建 fluorescence microscopy imaging deep learning super-resolution super-resolution microscopy imaging image reconstruction 
红外与激光工程
2022, 51(11): 20220536
闫天宇 1,2何颖 1王鑫宇 1,2徐欣怡 1,2[ ... ]陈雪利 1,2
作者单位
摘要
1 西安电子科技大学 生命科学技术学院,陕西 西安 710126
2 西安电子科技大学 西安市跨尺度生命信息智能感知与调控重点实验室,陕西 西安 710126
荧光显微成像具有高分辨率、高灵敏度、高分子特异性以及非介入性的优点,可以在微米乃至纳米尺度下表征样本的形态学与分子功能学信息,成为了生命科学研究的重要工具。随着微观生物学研究的不断深入,荧光显微成像被期待能够动态且立体地观测微观生物结构与分子事件。文中系统性地梳理了近年来快速三维荧光显微成像技术的研究进展,包括点扫描式成像、宽场成像与投影断层成像在提高成像速度、拓展成像维度以及增强成像质量等方面的主要技术手段、改进策略与代表性研究成果,并展望了快速三维荧光显微成像技术的未来挑战与发展前景。
生物医学工程 荧光显微成像 体积成像 快速扫描 光学断层 宽场显微镜 biomedical engineering fluorescence microscopic imaging volumetric imaging fast scanning optical tomography wide-field microscopy 
红外与激光工程
2022, 51(11): 20220546
张宁 1,2侯国忠 3邓岩岩 1,2张泽 1,2[ ... ]夏元钦 1,2
作者单位
摘要
1 河北工业大学 先进激光技术研究中心, 天津 300401
2 河北省先进激光技术与装备重点实验室, 天津 300401
3 哈尔滨工业大学 可调谐激光技术国家重点实验室, 哈尔滨 150080
利用宽带飞秒振荡器作为激发光源搭建了双光子荧光显微成像系统, 在飞秒脉冲的宽带激发下, 测量了罗丹明B溶液的双光子荧光光谱, 开展了罗丹明B固体样品的双光子荧光显微成像研究。在双光子荧光显微成像研究中, 通过调节激发脉冲的功率, 分析了双光子荧光强度和激发脉冲功率之间的关系, 并且利用半波片改变线偏振激发光场的偏振方向, 研究了双光子荧光强度随激发脉冲偏振方向的变化趋势, 实现了双光子荧光强度的类正弦调制。
宽带激发 双光子荧光显微成像 罗丹明B 类正弦调制 broadband excitation two-photon fluorescence microscopy Rhodamine B sinusoidal-like modulation 
半导体光电
2022, 43(5): 1005
作者单位
摘要
1 深圳大学物理与光电工程学院生物医学光子学研究中心光电子器件与系统 教育部/广东省重点实验室,广东 深圳 518060
2 深圳大学电子与信息工程学院,广东 深圳 518060
3 深圳大学化学与环境工程学院,广东 深圳 518060
双螺旋点扩散函数(DH-PSF)技术通过对成像系统光瞳面波前相位的调控,将系统的PSF改造为DH-PSF,可实现大深度、高精度的三维纳米尺度成像,被广泛应用于生命科学、材料科学、工业检测等领域。详细阐述了DH-PSF技术的基本原理、DH相位片的设计方法及其运用方法,并在此基础上介绍了该方法在深度估计技术、纳米尺度三维单颗粒示踪、超分辨荧光显微技术、新型激光扫描荧光显微技术等领域的应用研究进展,着重讨论了DH-PSF技术在这些应用实例中的优势,为相关领域的研究提供有益的参考。最后,对DH-PSF技术及其应用的发展方向进行展望。
荧光显微成像 超分辨成像 双螺旋点扩散函数 单颗粒示踪 深度估计 
激光与光电子学进展
2022, 59(18): 1800001
常松涛 1,2夏豪杰 1,2,*
作者单位
摘要
1 合肥工业大学 仪器科学与光电工程学院,安徽合肥230009
2 测量理论与精密仪器安徽省重点实验室,安徽合肥30009
时间延迟积分(Time Delay Integration, TDI)图像传感器具有高速、高灵敏度等特点,广泛应用于高通量、大视场的荧光显微成像系统中。显微物镜视场内响应均匀是精确获取荧光能量分布的基础,为提高系统成像质量和测量准确度,研究了适用于TDI荧光显微成像系统的平场校正或响应非均匀性校正方法。根据TDI荧光成像系统的工作原理推导激光诱导荧光成像模型,分析图像均匀性退化机理。提出一种基于微阵列生物芯片的两步式校正方法,将系统响应非均匀性分为高频和低频部分分别校正,高频部分采用传统的两点校正方法,低频部分采用微阵列生物芯片校正。基于高通量TDI荧光显微成像系统开展实验,执行并验证本文的校正方法。实验结果表明:本文方法将TDI荧光成像系统的响应非均匀性由25.21%降低至2.87%,显著提高了系统性能。本文提出的校正方法能够满足TDI荧光显微成像系统的平场校正需求,具有一定的应用价值。
荧光显微成像 时间延迟积分 非均匀性校正 微阵列生物芯片 fluorescence microscopy imaging time delay integration nonuniformity correction microarray biochip 
光学 精密工程
2022, 30(5): 527
作者单位
摘要
1 弱光非线性光子学教育部重点实验室, 南开大学物理科学学院, 泰达应用物理研究院, 天津 300071
2 药物化学生物学国家重点实验室, 南开大学生命科学学院, 细胞应答交叉科学中心, 天津 300071

21世纪初诞生的超分辨光学成像技术凭借纳米级空间分辨率、低损制样等优点,迅速发展成为生命科学研究中不可或缺的技术手段。其中单分子定位超分辨成像(SMLM)技术更是由于其成像原理易懂、空间分辨率极高等特点,一直受到科研工作者的青睐,不断取得重要的技术和应用进展。首先回顾了SMLM的工作原理,讨论了其光路搭建、图像重建、漂移校正等关键技术问题。介绍了两类代表性SMLM技术。列举了多种多色SMLM方法,并分析了各自的优缺点。介绍了SMLM成像参数的改进研究,包括横/纵分辨率的提高、成像视野和深度的改善。介绍了SMLM和深度学习,SMLM和电镜等成像手段结合的关联成像研究进展。讨论了SMLM数据提取与分析方法。最后列举了SMLM在细胞生物学中的重要应用,并展望了SMLM未来的发展方向。期望该综述能为SMLM工作者提供有益的启发和参考,推进SMLM在生命科学研究中的深入应用。

显微 荧光显微成像 超分辨成像 单分子定位 光学衍射极限 图像重建 
激光与光电子学进展
2021, 58(12): 1200001
作者单位
摘要
中国工程物理研究院流体物理研究所, 四川 绵阳 621900
提出了一种基于球面晶体的高光谱分辨全视场X射线荧光成像仪,并分析了该成像系统的空间分辨率、视场、能谱带宽、荧光收集效率。根据理论分析设计了一套用于V~Zn等典型中等原子序数金属的Kα线荧光成像系统,并采用解析的理论和本课题组编写的蒙特卡罗光线追迹程序对该系统性能进行了计算和仿真。理论分析和数值仿真的结果表明,这种X射线荧光成像技术具有较高的空间分辨率(优于80 μm)、较大的视场(大于6.5 mm)以及极高的光谱(能谱)分辨率(优于16.5 eV@4.6~9 keV)。
X射线光学 X-ray光谱 荧光显微成像 X-ray成像 晶体光学 
光学学报
2019, 39(11): 1134001
作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 教育部光学仪器与系统工程研究中心, 上海市现代光学系统重点实验室, 上海 200093
提出一种非轴向扫描的细胞显微深度成像技术, 在显微系统中加入菲涅耳透镜, 利用菲涅耳透镜的色散将不同激发光波长聚焦到不同的轴向位置, 以实现对两个或多个焦平面同时成像.基于405 nm和532 nm两种激发光波长, 在传统的荧光显微镜的激发路径中加入对应的两个成像探测器来探测两个不同焦平面所对应像面的成像信息, 搭建得到一个能够实现探测深度约为12 μm的基于菲涅耳透镜的荧光显微深度成像系统, 并与基于显微物镜色差无菲涅耳透镜的荧光显微深度成像系统的成像深度和轴向分辨率进行实验对比.实验结果表明: 加入菲涅耳透镜能够实现系统对不同焦面的同时成像; 对于同一荧光波段, 保证系统横向分辨率的同时, 扩大了成像景深.该系统可以实现荧光生物细胞内部不同深度处的多波段同时探测.
显微系统 荧光显微成像 菲涅耳透镜 荧光细胞 焦距偏移 深度成像 轴向分辨率 Microscopy system Fluorescent microscopic imaging Fresnel lens Fluorescent cell Focal shift Depth imaging Axial resolution 
光子学报
2018, 47(9): 0917003
作者单位
摘要
1 中国科学院 苏州生物医学工程技术研究所, 江苏省医用光学重点实验室, 江苏 苏州 215163
2 中国科学院大学, 北京 100049
双光子成像(Two-Photon Imaging)技术以其优越特性被广泛用于活细胞动态三维成像, 但光功率极高的短脉冲光对焦平面荧光分子严重的光漂白极大地影响了双光子长时间成像的图像质量, 针对双光子荧光漂白问题, 本文提出一种优化光照的双光子(Optimized Lighting-Two Photon,OL-TP)成像技术。通过预扫描获取双光子图像分析高低阈值, 以预设的高低阈值为标准优化一幅图像中不同区域的光照时长, 利用扫描过程中记录的荧光信息和光照时间信息可以重建OL-TP图像, 既保证信噪比又降低荧光漂白。重建的OL-TP图像与传统双光子图像基本一致, 信噪比略有降低, 但图像并未失真。对110 nm的荧光小球样本分别连续取30幅普通双光子和优化光照的双光子图像, 到第30幅图时, 重建后的优化光照双光子图像比普通双光子图像荧光漂白降低了2886%。OL-TP通过优化光照时间大幅降低双光子成像的荧光漂白, 使双光子荧光显微镜能够更好地对生物样本进行长时间观测。
双光子显微成像 荧光显微成像 荧光漂白 two-photon microscopy imaging fluorescence microscopy imaging photobleaching 
中国光学
2018, 11(3): 337

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!