光学学报, 2019, 39 (3): 0324001, 网络出版: 2019-05-10   

基于原子层沉积技术的石英管表面减反射膜的制备 下载: 1028次

Preparation of Anti-Reflection Coatings on Quartz Tube Surfaces Based on Atomic Layer Deposition
作者单位
浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
摘要
采用原子层沉积(ALD)技术在石英管表面制备了薄膜,研究了该薄膜的均匀性,以及石英管的内径、外径、长度对沉积薄膜均匀性的影响。以单波长减反射膜为研究对象,实验测试的反射光谱与仿真结果一致,石英管表面最低反射率可降至0.17%。忽略夹具影响,石英管外壁与内壁的减反射薄膜的非均匀性基本一致,在±1.69%范围内,内外壁表面减反射薄膜的厚度和中心波长相同,且石英管尺寸对内外壁薄膜均匀性无明显影响。利用ALD技术可在大曲率元件的内外表面沉积厚度偏差小且均匀性分布相似的减反射薄膜。
Abstract
The uniformity distributions of the anti-reflection (AR) coatings prepared on the quartz tube surfaces by the atomic layer deposition (ALD) technique as well as the influences of the inner diameter, outer diameter, and quartz tube length on the uniformity distributions of the deposited coatings are studied. With the single-wavelength AR coatings as the research object, the reflectivity spectrum from the experimental test matches well with the simulated result. The minimum reflectivity on the quartz tube surface is decreased to 0.17%. If the effect of the sample holder is ignored, the non-uniformity of the AR coatings for the outer and the inner surfaces of the quartz tubes is roughly identical,which is within the range of ±1.69%. The thicknesses and the central wavelengths of the AR coatings for the inner and outer surfaces are almost identical. Moreover, the variation of the quartz tube size has no obvious effect on the coating uniformity of the outer and inner surfaces. Therefore, the AR coatings with small thickness deviations and similar uniformity distributions can be deposited on the outer and inner surfaces of large curvature elements by the ALD technology.

1 引言

大曲率的光学元件如球透镜、非球面镜、石英管等被广泛应用于激光器系统、光学显微镜系统以及投影系统等光学系统中。为了满足不同光学系统对透射率、反射率及偏振的要求,通常需要在大曲率光学元件表面沉积薄膜,而薄膜的均匀性对于光学系统的性能(成像质量、测试精度等)有着重要的影响[1-3]。减反射膜作为目前应用最广、产量最大的一种光学薄膜,可以通过气相法和液相法制备[4-6],其在大曲率光学元件表面的均匀性依然是目前研究的热点之一。

物理气相沉积(PVD)技术广泛应用于光学薄膜的制备,由于PVD沉积过程中沉积粒子分布和运动轨迹具有定向性,空间分布对于薄膜厚度较为敏感,因而对大曲率光学元件和不规则的表面制备薄膜的均匀性有很大限制。通过改变气流分布、元件轨迹、靶材位置等,可以改善规则大曲率光学元件表面薄膜的均匀性[7-8]。Lanzafame等[9]提出一种将倒圆柱磁控管(ICM)溅射阴极与衬底载体配置结合在一起的新型光学镀膜系统,可以在曲率半径为50 mm、直径为50 mm的上凸面和下凹面基板上分别沉积非均匀性为±0.3%、±0.5%的单层膜。但目前PVD技术仍无法保证在整个球表面沉积均匀性较优的薄膜,且无法在具有内外表面的大曲率元件上同时沉积均匀的薄膜。

浸渍法属于液相法的一种,通过直接将基板浸渍在涂布液中,以一定的速度提拉后,可以同时在基板内外形成薄膜,该方法被广泛应用于弯曲表面薄膜的沉积。薄膜厚度和均匀性主要取决于涂布液的黏度及提拉速度[10-13]。但该方法实际成膜会存在一定长度范围的非均匀区域,且经常会发生如液滴、线状条纹等缺陷,较难将薄膜的均匀性控制在较优水平[14-15]。因此,对于制备精度要求较高的光学薄膜,浸渍法具有很大局限性。

化学气相沉积(CVD)技术利用气态反应物在固态基板表面形成薄膜,具有优良的绕镀特性,可以克服上述PVD技术和浸渍法的缺点。原子层沉积(ALD)技术作为一种改进的CVD技术,凭借其优异的表面均匀性和复形性,能够在大曲率光学元件表面内外同时沉积均匀的薄膜[16-19]。通过将前驱体和吹扫气体交替通入至饱和的方法,ALD技术使得腔内仅在基底表面发生化学气相反应,即发生饱和自限制反应[20]。通过控制沉积周期,ALD技术可在深宽比较大的狭缝、天线等微纳结构以及大曲率表面精确沉积厚度均匀的薄膜[21-24]。本文研究ALD技术在大曲率石英管内外表面沉积单点减反射膜的均匀性分布,实验结果表明,石英管表面最低反射率为0.17%,忽略夹具的影响,内外壁均匀性和薄膜厚度的变化趋势一致,且不随石英管的尺寸变化而改变。

2 实验方法

本实验采用芬兰Beneq公司生产的TFS200型ALD设备的三维反应腔。制备550 nm单波长减反射膜的高折射率材料分别是氧化铝(Al2O3)和氧化钛(TiO2)。两种材料均在基板温度120 ℃下制备,腔内吹扫气体为N2。利用前驱体TiCl4和去离子水(H2O)制备TiO2,而Al2O3的前驱体分别是三甲基铝(TMA)和去离子水(H2O),单个周期的ALD沉积过程包括4个步骤和2个半反应。每个半反应开始时,先通入一种反应前驱体,后通入清洗气体对过量反应物和副产物进行吹扫,具体工艺参数见表1。以上3种前驱体均为液态源,存放于金属有机物(MO)源瓶中,温度保持在20 ℃,通过自身饱和蒸气压挥发出源,TiCl4和TMA均购自中国南京爱牟源科学器材有限公司。反射率的测试利用日本Olympus公司生产的USPM-RU型反射仪,其基于共聚焦显微系统,可以排除背面反射的影响。首先在石英管上(内径为20 mm,壁厚6 mm,长20 mm)分别沉积单层TiO2和Al2O3薄膜,采用Cauchy色散模型拟合反射率曲线的光度法确定大曲率石英管表面沉积薄膜的沉积速率(GPC)和折射率。

表 1. 基于ALD技术制备Al2O3和TiO2的工艺参数

Table 1. Process parameters for preparation of Al2O3 and TiO2 based on ALD technology

MaterialSubstrate temperature /First reactant(pulse time)Purge gas(purge time)Second reactant (pulse time)Purge gas(purge time)
TiO2120TiCl4(0.35 s)N2(6 s)H2O(0.3 s)N2(8 s)
Al2O3120TMA(0.50 s)N2(6 s)H2O(0.3 s)N2(8 s)

查看所有表

为了在石英管内外壁表面沉积均匀的薄膜,尤其是石英管外壁的底部,实验中采用如图1(a)所示的铝板夹具将不同尺寸的石英管垫高至三维反应腔的中间。三维腔的总高度为95 mm,石英管的圆心位于高度为40 mm处,夹具的上梁宽度由石英管外壁半径R决定,而高度H取决于

H=40-32R,(1)

下梁宽度L的计算公式为

L=R+2H3,(2)

夹具的长度为20 mm,厚度为0.5 mm。

单个石英管上内外壁的均匀性测试如图1(b)所示,在横截面的圆周方向取14个角度,轴向上每5 mm分别取点来测试反射光谱。以石英管上减反射膜最低反射率对应的中心波长的偏差±Nu%来衡量薄膜的非均匀性:

Nu%=λmax-λmin2λaverage×100%,(3)

式中:λmax为石英管上最大中心波长;λmin为最小中心波长;λaverage为平均中心波长。通过圆周方向、轴向以及内外壁整体不同位置处减反射膜中心波长的分析,衡量单个石英管膜层的均匀性。

图 1. 石英管夹具和石英管上测试点示意图。 (a)石英管夹具;(b)测试点

Fig. 1. Schematic of quartz tube holder and various testing points on quartz tube. (a) Quartz tube holder; (b) testing points

下载图片 查看所有图片

为了研究内径、外径和长度等参数对石英管内外表面膜厚均匀性的影响,以表2所列的石英管尺寸进行分组实验,分析ALD减反射膜的光学特性。

表 2. 石英管尺寸

Table 2. Quartz tube size

Experimental groupOuter diameter/mmInner diameter/mmLength/mm
232020
1262020
302020
403720
2403420
403020
403430
3403440
403450

查看所有表

3 结果及分析

3.1 单波长550 nm减反射膜

通过在石英管表面沉积Al2O3薄膜,并采用光度法进行拟合,得到石英管壁表面ALD Al2O3薄膜的稳定生长速率为0.110 nm/cycle。利用内外壁上单点中心波长与平均中心波长的偏差衡量均匀性,整个外壁的厚度分布见图2(a), 除去夹具影响,非均匀性为±1.46%,折射率如图3(a)所示, 550 nm处折射率为1.63。石英管表面ALD TiO2薄膜稳定生长速率为0.0539 nm/cycle,整个外壁的厚度分布见图2(b),非均匀性为±2.79%。如图3(b)所示, 550 nm处折射率为2.43,消光系数为5×10-4。由于利用TiCl4制备TiO2过程中会残留副产物HCl,其与中间产物反应生成杂质[25],而Al2O3薄膜制备过程中不存在卤族元素杂质,因此TiO2薄膜的均匀性不如Al2O3薄膜。

图 2. 单层膜的厚度均匀性分布。(a) Al2O3薄膜;(b) TiO2薄膜

Fig. 2. Thickness uniformity distribution of single layer. (a) Al2O3 film; (b) TiO2 film

下载图片 查看所有图片

图 3. 材料折射率和消光系数。(a) Al2O3折射率;(b) TiO2折射率和消光系数

Fig. 3. Refractive index and extinction coefficient of materials. (a) Refractive index of Al2O3; (b) refractive index and extinction coefficient of TiO2

下载图片 查看所有图片

根据Al2O3和TiO2薄膜的光学常数,设计得到单波长为550 nm的减反射膜系结构Glass/TiO2 (20 nm)/ Al2O3 (113.8 nm),在550 nm处反射率小于0.01%。实际制备的石英管上减反射膜的反射率测试曲线如图4所示,其与理论结果一致。从图4的插图可以看出,在550 nm处的最低反射率为0.17%,比理论值略高,这是由于材料的折射率误差引起的。

图 4. 单波长550 nm减反射膜的反射率曲线

Fig. 4. Experimental and simulated reflectivities of single wavelength 550 nm AR coating

下载图片 查看所有图片

3.2 石英管内外壁的均匀性研究

相比PVD技术只能保证较小角度范围曲面上的薄膜均匀性,ALD技术凭借其特有的自限制反应,能够在整个管柱状光学元件的表面上沉积均匀的薄膜。为了探究ALD技术在石英管外壁制备减反射膜的均匀性以及外壁直径对薄膜厚度和均匀性的影响,选取内壁直径为20 mm,长度为20 mm,外壁直径分别为23、26、30 mm的石英管进行实验。对3种石英管外壁的圆周方向(半长度的横截面上)、长度方向(0°方位)、以及整个外壁表面的非均匀性及单点中心波长与平均中心波长的偏差进行分析。如表3所示,外壁圆周方向的非均匀性约为±1%,轴向非均匀性小于±0.5%,外壁整体非均匀性接近±2%。从图5(a)所示的圆周方向的均匀性可以看出,石英管在±150°两个位置处的中心波长明显偏短(-8 nm),这主要是因为夹具的遮挡效应使得石英管与0.5 mm厚铝板接触处的薄膜厚度变薄,导致外壁圆周方向和整体非均匀性明显高于轴向。若去除受夹具影响的这两个位置,横截面上其余区域的实际厚度偏差小于0.7%,整体非均匀性降至±1.69%以内,说明外壁非均匀性受夹具影响而变大。此外,三种尺寸石英管的整体非均匀性和厚度的变化趋势一致,说明外径和壁厚对均匀性的影响不大。

表 3. 不同外径石英管的外壁非均匀性

Table 3. Non-uniformity on outer surfaces of quartz tubes with different outer diameters

Outer diameter /mmCircumferential non-uniformity /%Axial non-uniformity /%Total non-uniformity /%Total non-uniformity except ±150° /%Total averagecenter wavelength /nm
231.000.271.971.69547
261.130.501.731.04549
301.180.361.911.50549

查看所有表

图 5. 不同外径石英管外壁的中心波长偏差。(a)外壁圆周方向;(b)外壁轴向

Fig. 5. Central wavelength deviations on outer surfaces of quartz tubes with different outer diameters. (a) Circumferential direction of outer surface; (b) axial direction of outer surface

下载图片 查看所有图片

不同于PVD技术只能在基板一侧沉积薄膜,ALD技术可以在石英管的内、外壁同时成膜。在外壁直径为40 mm、长度为20 mm、内壁直径分别为37、34、30 mm的石英管上沉积550 nm单点减反射膜。不同内径石英管的内壁非均匀性见表4,圆周方向和轴向上的非均匀性都在±1%以内,整体非均匀性小于±1.6%,石英管内壁非均匀性与去除夹具影响的石英管外壁相似。从图6可以看出,石英管内壁薄膜均匀性变化趋势一致,轴向入口和出口位置中心波长偏差小于±4 nm,没有出现浸渍法在圆柱表面成膜时存在的入口非均匀的现象[12-13]。三种内径石英管的整体平均中心波长为552 nm左右,均匀性变化趋势也一致,说明ALD可以在不同内壁直径的石英管内沉积厚度均匀的薄膜。

表 4. 不同内径石英管的内壁非均匀性

Table 4. Non-uniformity on inner surfaces of quartz tubes with different inner diameters

Inner diameter /mmCircumferential non-uniformity /%Axial non-uniformity /%Total non-uniformity /%Total averagecenter wavelength /nm
370.680.681.59551
340.360.721.49552
300.490.591.26553

查看所有表

图 6. 不同内径石英管内壁的中心波长偏差。(a)内壁圆周方向;(b)内壁轴向

Fig. 6. Central wavelength deviations on inner surfaces of quartz tubes with different inner diameters. (a) Circumferential direction of inner surface; (b) axial direction of inner surface

下载图片 查看所有图片

前述实验结果显示,控制石英管长度为20 mm时,内外壁的轴向非均匀性均小于±1%。为了研究长度变化对石英管内外壁薄膜厚度和均匀性的影响,利用内、外壁直径分别为40 mm和34 mm,长度分别为30、40、50 mm的石英管进行实验。实验结果如表5图7所示,当长度增加至50 mm时,石英管内外壁的轴向非均匀性仍小于±1%,且随长度变化没有呈现规律性变化。不同长度石英管内外壁圆周方向非均匀性与轴向一致,均小于±1%,整体非均匀性为±1.5%左右,优于长度为20 mm的石英管的整体非均匀性。该组石英管长度均大于夹具的长度20 mm,使得夹具对外壁的遮挡效应相对变小,内外壁非均匀性也趋于一致,石英管内外壁的中心波长偏差都在±5 nm以内。

表 5. 不同长度石英管的内壁和外壁均匀性

Table 5. Uniformity of inner and outer surfaces of quartz tubes with different lengths

PositionLength /mmCircumferential non-uniformity /%Axial non-uniformity /%Total non-uniformity /%Total averagecenter wavelength /nm
300.780.781.10543
Inner surface400.370.831.48542
500.500.641.42544
300.830.641.29544
Outer surface400.460.271.47546
500.690.601.65544

查看所有表

图 7. 不同长度石英管内外壁的轴向中心波长偏差。(a)内壁轴向;(b)外壁轴向

Fig. 7. Axial central wavelength deviations on inner and outer surfaces of quartz tubes with different lengths. (a) Axial direction of inner surface; (b) axial direction of outer surface

下载图片 查看所有图片

以外径为40 mm、内径为34 mm和长度为50 mm的石英管为例,对同一管子内外壁的厚度均匀性进行分析,该石英管的中心波长分布如图8所示。由图8可知,该石英管外壁的整体非均匀性为±1.65%,受夹具影响,外壁±150°位置中心波长明显小于附近其他位置;石英管内壁整体非均匀性略小于外壁,为±1.42%。内外壁整体平均中心波长都为544 nm,且内壁和外壁的中心波长分布没有明显差异,即ALD在内外壁同时沉积的薄膜厚度一致。因此,ALD技术可在大曲率或者异形表面内外侧同时沉积同一光学特性的薄膜,具有PVD技术和浸渍法无法企及的独特优势。

图 8. 外径为40 mm,内径为34 mm,长度为50 mm石英管的中心波长分布。(a)外壁;(b)内壁

Fig. 8. Central wavelength distributions of quartz tube with outer diameter of 40 mm, inner diameter of 37 mm, and length of 50 mm. (a) Outer surface; (b) inner surface

下载图片 查看所有图片

4 结论

通过ALD Al2O3和TiO2材料在石英管上制备550 nm单波长减反射膜,研究ALD技术在大曲率石英管表面沉积薄膜的厚度和均匀性分布,以及石英管内径、外径及长度尺寸的影响。实验测试结果显示,最低点反射率为0.17%。在不考虑夹具影响的条件下,单个石英管内壁和外壁的横截面和轴向非均匀性均小于±1%,圆周方向特别是底部均可以获得较好的均匀性,轴向均匀性优于浸渍法。同一个石英管内壁和外壁的整体非均匀性基本一致,为±1.5%左右。与其他气相、PVD技术及液相薄膜制备技术相比,ALD技术可以同时在大曲率光学元件内外侧两个表面同时涂覆均匀性相似且厚度一致的薄膜而不受石英管尺寸的影响。近年来,前驱体材料的丰富,等离子体增强ALD技术(PEALD)和快速ALD技术(RALD)的出现,原有的反应速率慢,沉积周期长,使用温度高的缺点都在逐渐被优化, 结合ALD技术独有的在大曲率元件表面沉积薄膜的优势,其在大批量生产应用中的适用性将会不断被提高。

参考文献

[1] Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb…YAG laser[J]. Optics Letters, 1991, 16(14): 1089-1091.

    Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb…YAG laser[J]. Optics Letters, 1991, 16(14): 1089-1091.

    Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb…YAG laser[J]. Optics Letters, 1991, 16(14): 1089-1091.

    Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb…YAG laser[J]. Optics Letters, 1991, 16(14): 1089-1091.

    Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb…YAG laser[J]. Optics Letters, 1991, 16(14): 1089-1091.

[2] 张宝仁, 吴礼明, 刘贵萍. 高功率CO2激光器的增透膜[J]. 中国激光, 1980, 7(11): 48-51.

    张宝仁, 吴礼明, 刘贵萍. 高功率CO2激光器的增透膜[J]. 中国激光, 1980, 7(11): 48-51.

    张宝仁, 吴礼明, 刘贵萍. 高功率CO2激光器的增透膜[J]. 中国激光, 1980, 7(11): 48-51.

    张宝仁, 吴礼明, 刘贵萍. 高功率CO2激光器的增透膜[J]. 中国激光, 1980, 7(11): 48-51.

    张宝仁, 吴礼明, 刘贵萍. 高功率CO2激光器的增透膜[J]. 中国激光, 1980, 7(11): 48-51.

    Zhang B R, Wu L M, Liu G P. Anti-reflective coatings for high power CO2 laser systems[J]. Chinese Journal of Lasers, 1980, 7(11): 48-51.

    Zhang B R, Wu L M, Liu G P. Anti-reflective coatings for high power CO2 laser systems[J]. Chinese Journal of Lasers, 1980, 7(11): 48-51.

    Zhang B R, Wu L M, Liu G P. Anti-reflective coatings for high power CO2 laser systems[J]. Chinese Journal of Lasers, 1980, 7(11): 48-51.

    Zhang B R, Wu L M, Liu G P. Anti-reflective coatings for high power CO2 laser systems[J]. Chinese Journal of Lasers, 1980, 7(11): 48-51.

    Zhang B R, Wu L M, Liu G P. Anti-reflective coatings for high power CO2 laser systems[J]. Chinese Journal of Lasers, 1980, 7(11): 48-51.

[3] 来邻, 李旸晖, 周辉, 等. 基于原子层沉积的大曲率基底表面薄膜均匀性研究[J]. 激光与光电子学进展, 2018, 55(3): 033101.

    来邻, 李旸晖, 周辉, 等. 基于原子层沉积的大曲率基底表面薄膜均匀性研究[J]. 激光与光电子学进展, 2018, 55(3): 033101.

    来邻, 李旸晖, 周辉, 等. 基于原子层沉积的大曲率基底表面薄膜均匀性研究[J]. 激光与光电子学进展, 2018, 55(3): 033101.

    来邻, 李旸晖, 周辉, 等. 基于原子层沉积的大曲率基底表面薄膜均匀性研究[J]. 激光与光电子学进展, 2018, 55(3): 033101.

    来邻, 李旸晖, 周辉, 等. 基于原子层沉积的大曲率基底表面薄膜均匀性研究[J]. 激光与光电子学进展, 2018, 55(3): 033101.

    Lai L, Li Y H, Zhou H, et al. Study of film uniformity on large-curvature substrate surface based on atomic layer deposition[J]. Laser & Optoelectronics Progress, 2018, 55(3): 033101.

    Lai L, Li Y H, Zhou H, et al. Study of film uniformity on large-curvature substrate surface based on atomic layer deposition[J]. Laser & Optoelectronics Progress, 2018, 55(3): 033101.

    Lai L, Li Y H, Zhou H, et al. Study of film uniformity on large-curvature substrate surface based on atomic layer deposition[J]. Laser & Optoelectronics Progress, 2018, 55(3): 033101.

    Lai L, Li Y H, Zhou H, et al. Study of film uniformity on large-curvature substrate surface based on atomic layer deposition[J]. Laser & Optoelectronics Progress, 2018, 55(3): 033101.

    Lai L, Li Y H, Zhou H, et al. Study of film uniformity on large-curvature substrate surface based on atomic layer deposition[J]. Laser & Optoelectronics Progress, 2018, 55(3): 033101.

[4] 郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029.

    郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029.

    郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029.

    郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029.

    郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029.

    Zheng Z R, Gu P F, Chen H X, et al. Design and preparation of super broadband antireflection coating[J]. Acta Optica Sinica, 2009, 29(7): 2026-2029.

    Zheng Z R, Gu P F, Chen H X, et al. Design and preparation of super broadband antireflection coating[J]. Acta Optica Sinica, 2009, 29(7): 2026-2029.

    Zheng Z R, Gu P F, Chen H X, et al. Design and preparation of super broadband antireflection coating[J]. Acta Optica Sinica, 2009, 29(7): 2026-2029.

    Zheng Z R, Gu P F, Chen H X, et al. Design and preparation of super broadband antireflection coating[J]. Acta Optica Sinica, 2009, 29(7): 2026-2029.

    Zheng Z R, Gu P F, Chen H X, et al. Design and preparation of super broadband antireflection coating[J]. Acta Optica Sinica, 2009, 29(7): 2026-2029.

[5] Pfeiffer K, Schulz U, Tünnermann A, et al. Ta2O5/ Al2 O3/SiO2-antireflective coating for non-planar optical surfaces by atomic layer deposition[J]. Proceedings of SPIE, 2017, 10115: 1011513.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Ta2O5/ Al2 O3/SiO2-antireflective coating for non-planar optical surfaces by atomic layer deposition[J]. Proceedings of SPIE, 2017, 10115: 1011513.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Ta2O5/ Al2 O3/SiO2-antireflective coating for non-planar optical surfaces by atomic layer deposition[J]. Proceedings of SPIE, 2017, 10115: 1011513.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Ta2O5/ Al2 O3/SiO2-antireflective coating for non-planar optical surfaces by atomic layer deposition[J]. Proceedings of SPIE, 2017, 10115: 1011513.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Ta2O5/ Al2 O3/SiO2-antireflective coating for non-planar optical surfaces by atomic layer deposition[J]. Proceedings of SPIE, 2017, 10115: 1011513.

[6] Xu Y, Zhang B, Wen H F, et al. Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold[J]. Thin Solid Films, 2003, 440(1/2): 180-183.

    Xu Y, Zhang B, Wen H F, et al. Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold[J]. Thin Solid Films, 2003, 440(1/2): 180-183.

    Xu Y, Zhang B, Wen H F, et al. Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold[J]. Thin Solid Films, 2003, 440(1/2): 180-183.

    Xu Y, Zhang B, Wen H F, et al. Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold[J]. Thin Solid Films, 2003, 440(1/2): 180-183.

    Xu Y, Zhang B, Wen H F, et al. Sol-gel broadband anti-reflective single-layer silica films with high laser damage threshold[J]. Thin Solid Films, 2003, 440(1/2): 180-183.

[7] TomofujiT, OkadaN, HirakiS, et al. A new coating technique for lenses which have steep curved surface[C]. Optical Interference Coatings, 2001: MD2.

    TomofujiT, OkadaN, HirakiS, et al. A new coating technique for lenses which have steep curved surface[C]. Optical Interference Coatings, 2001: MD2.

    TomofujiT, OkadaN, HirakiS, et al. A new coating technique for lenses which have steep curved surface[C]. Optical Interference Coatings, 2001: MD2.

    TomofujiT, OkadaN, HirakiS, et al. A new coating technique for lenses which have steep curved surface[C]. Optical Interference Coatings, 2001: MD2.

    TomofujiT, OkadaN, HirakiS, et al. A new coating technique for lenses which have steep curved surface[C]. Optical Interference Coatings, 2001: MD2.

[8] 袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.

    袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.

    袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.

    袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.

    袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.

    Yuan W J, Shen W D, Zheng X W, et al. Optical and mechanical properties and microstructures of Nb2O3, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001.

    Yuan W J, Shen W D, Zheng X W, et al. Optical and mechanical properties and microstructures of Nb2O3, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001.

    Yuan W J, Shen W D, Zheng X W, et al. Optical and mechanical properties and microstructures of Nb2O3, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001.

    Yuan W J, Shen W D, Zheng X W, et al. Optical and mechanical properties and microstructures of Nb2O3, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001.

    Yuan W J, Shen W D, Zheng X W, et al. Optical and mechanical properties and microstructures of Nb2O3, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001.

[9] Lanzafame JF, Glocker D. System forsputtering optical coatings on curved surfaces[C]. Optical Interference Coatings, 2016: WE. 5.

    Lanzafame JF, Glocker D. System forsputtering optical coatings on curved surfaces[C]. Optical Interference Coatings, 2016: WE. 5.

    Lanzafame JF, Glocker D. System forsputtering optical coatings on curved surfaces[C]. Optical Interference Coatings, 2016: WE. 5.

    Lanzafame JF, Glocker D. System forsputtering optical coatings on curved surfaces[C]. Optical Interference Coatings, 2016: WE. 5.

    Lanzafame JF, Glocker D. System forsputtering optical coatings on curved surfaces[C]. Optical Interference Coatings, 2016: WE. 5.

[10] Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation[J]. Journal of Non-Crystalline Solids, 1992, 147: 424-436.

    Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation[J]. Journal of Non-Crystalline Solids, 1992, 147: 424-436.

    Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation[J]. Journal of Non-Crystalline Solids, 1992, 147: 424-436.

    Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation[J]. Journal of Non-Crystalline Solids, 1992, 147: 424-436.

    Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation[J]. Journal of Non-Crystalline Solids, 1992, 147: 424-436.

[11] 敖登格日乐. 浸渍法在制备薄膜中的应用[J]. 内蒙古石油化工, 2013( 21): 20- 21.

    敖登格日乐. 浸渍法在制备薄膜中的应用[J]. 内蒙古石油化工, 2013( 21): 20- 21.

    敖登格日乐. 浸渍法在制备薄膜中的应用[J]. 内蒙古石油化工, 2013( 21): 20- 21.

    敖登格日乐. 浸渍法在制备薄膜中的应用[J]. 内蒙古石油化工, 2013( 21): 20- 21.

    敖登格日乐. 浸渍法在制备薄膜中的应用[J]. 内蒙古石油化工, 2013( 21): 20- 21.

    Ao D G R L. Application of dip-coating in preparation of thin films[J]. Inner Mongolia Petrochemical Industry, 2013( 21): 20- 21.

    Ao D G R L. Application of dip-coating in preparation of thin films[J]. Inner Mongolia Petrochemical Industry, 2013( 21): 20- 21.

    Ao D G R L. Application of dip-coating in preparation of thin films[J]. Inner Mongolia Petrochemical Industry, 2013( 21): 20- 21.

    Ao D G R L. Application of dip-coating in preparation of thin films[J]. Inner Mongolia Petrochemical Industry, 2013( 21): 20- 21.

    Ao D G R L. Application of dip-coating in preparation of thin films[J]. Inner Mongolia Petrochemical Industry, 2013( 21): 20- 21.

[12] Köstlin H, Frank G, Hebbinghaus G, et al. Optical filters on linear halogen-lamps prepared by dip-coating[J]. Journal of Non-Crystalline Solids, 1997, 218: 347-353.

    Köstlin H, Frank G, Hebbinghaus G, et al. Optical filters on linear halogen-lamps prepared by dip-coating[J]. Journal of Non-Crystalline Solids, 1997, 218: 347-353.

    Köstlin H, Frank G, Hebbinghaus G, et al. Optical filters on linear halogen-lamps prepared by dip-coating[J]. Journal of Non-Crystalline Solids, 1997, 218: 347-353.

    Köstlin H, Frank G, Hebbinghaus G, et al. Optical filters on linear halogen-lamps prepared by dip-coating[J]. Journal of Non-Crystalline Solids, 1997, 218: 347-353.

    Köstlin H, Frank G, Hebbinghaus G, et al. Optical filters on linear halogen-lamps prepared by dip-coating[J]. Journal of Non-Crystalline Solids, 1997, 218: 347-353.

[13] Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201(1): 97-108.

    Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201(1): 97-108.

    Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201(1): 97-108.

    Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201(1): 97-108.

    Brinker C J, Frye G C, Hurd A J, et al. Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201(1): 97-108.

[14] 谢俊舰, 李木军, 沈连婠, 等. 提拉法涂胶膜厚均匀性研究[J]. 机械与电子, 2016, 34(7): 6-10.

    谢俊舰, 李木军, 沈连婠, 等. 提拉法涂胶膜厚均匀性研究[J]. 机械与电子, 2016, 34(7): 6-10.

    谢俊舰, 李木军, 沈连婠, 等. 提拉法涂胶膜厚均匀性研究[J]. 机械与电子, 2016, 34(7): 6-10.

    谢俊舰, 李木军, 沈连婠, 等. 提拉法涂胶膜厚均匀性研究[J]. 机械与电子, 2016, 34(7): 6-10.

    谢俊舰, 李木军, 沈连婠, 等. 提拉法涂胶膜厚均匀性研究[J]. 机械与电子, 2016, 34(7): 6-10.

    Xie J J, Li M J, Shen L G, et al. Research on film thickness homogeneity in dip coating[J]. Machinery & Electronics, 2016, 34(7): 6-10.

    Xie J J, Li M J, Shen L G, et al. Research on film thickness homogeneity in dip coating[J]. Machinery & Electronics, 2016, 34(7): 6-10.

    Xie J J, Li M J, Shen L G, et al. Research on film thickness homogeneity in dip coating[J]. Machinery & Electronics, 2016, 34(7): 6-10.

    Xie J J, Li M J, Shen L G, et al. Research on film thickness homogeneity in dip coating[J]. Machinery & Electronics, 2016, 34(7): 6-10.

    Xie J J, Li M J, Shen L G, et al. Research on film thickness homogeneity in dip coating[J]. Machinery & Electronics, 2016, 34(7): 6-10.

[15] 曹鸿, 张传军, 王善力, 等. 聚苯乙烯滤光膜均匀性的研究[J]. 激光技术, 2012, 36(5): 623-626.

    曹鸿, 张传军, 王善力, 等. 聚苯乙烯滤光膜均匀性的研究[J]. 激光技术, 2012, 36(5): 623-626.

    曹鸿, 张传军, 王善力, 等. 聚苯乙烯滤光膜均匀性的研究[J]. 激光技术, 2012, 36(5): 623-626.

    曹鸿, 张传军, 王善力, 等. 聚苯乙烯滤光膜均匀性的研究[J]. 激光技术, 2012, 36(5): 623-626.

    曹鸿, 张传军, 王善力, 等. 聚苯乙烯滤光膜均匀性的研究[J]. 激光技术, 2012, 36(5): 623-626.

    Cao H, Zhang C J, Wang S L, et al. Research of uniformity of C8H8 filters[J]. Laser Technology, 2012, 36(5): 623-626.

    Cao H, Zhang C J, Wang S L, et al. Research of uniformity of C8H8 filters[J]. Laser Technology, 2012, 36(5): 623-626.

    Cao H, Zhang C J, Wang S L, et al. Research of uniformity of C8H8 filters[J]. Laser Technology, 2012, 36(5): 623-626.

    Cao H, Zhang C J, Wang S L, et al. Research of uniformity of C8H8 filters[J]. Laser Technology, 2012, 36(5): 623-626.

    Cao H, Zhang C J, Wang S L, et al. Research of uniformity of C8H8 filters[J]. Laser Technology, 2012, 36(5): 623-626.

[16] George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.

    George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.

    George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.

    George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.

    George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.

[17] Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

    Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

    Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

    Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

    Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures[J]. Thin Solid Films, 2002, 409(1): 138-146.

[18] Dasgupta N P. Lee H B R, Bent S F, et al. Recent advances in atomic layer deposition[J]. Chemistry of Materials, 2016, 28(7): 1943-1947.

    Dasgupta N P. Lee H B R, Bent S F, et al. Recent advances in atomic layer deposition[J]. Chemistry of Materials, 2016, 28(7): 1943-1947.

    Dasgupta N P. Lee H B R, Bent S F, et al. Recent advances in atomic layer deposition[J]. Chemistry of Materials, 2016, 28(7): 1943-1947.

    Dasgupta N P. Lee H B R, Bent S F, et al. Recent advances in atomic layer deposition[J]. Chemistry of Materials, 2016, 28(7): 1943-1947.

    Dasgupta N P. Lee H B R, Bent S F, et al. Recent advances in atomic layer deposition[J]. Chemistry of Materials, 2016, 28(7): 1943-1947.

[19] Yuan GJ, WangN, Huang SR, et al. A brief overview of atomic layer deposition and etching in the semiconductor processing[C]. International Conference on Electronic Packaging Technology, 2016: 1365- 1368.

    Yuan GJ, WangN, Huang SR, et al. A brief overview of atomic layer deposition and etching in the semiconductor processing[C]. International Conference on Electronic Packaging Technology, 2016: 1365- 1368.

    Yuan GJ, WangN, Huang SR, et al. A brief overview of atomic layer deposition and etching in the semiconductor processing[C]. International Conference on Electronic Packaging Technology, 2016: 1365- 1368.

    Yuan GJ, WangN, Huang SR, et al. A brief overview of atomic layer deposition and etching in the semiconductor processing[C]. International Conference on Electronic Packaging Technology, 2016: 1365- 1368.

    Yuan GJ, WangN, Huang SR, et al. A brief overview of atomic layer deposition and etching in the semiconductor processing[C]. International Conference on Electronic Packaging Technology, 2016: 1365- 1368.

[20] Pfeiffer K, Schulz U, Tünnermann A, et al. Antireflection coatings for strongly curved glass lenses by atomic layer deposition[J]. Coatings, 2017, 7(8): 118.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Antireflection coatings for strongly curved glass lenses by atomic layer deposition[J]. Coatings, 2017, 7(8): 118.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Antireflection coatings for strongly curved glass lenses by atomic layer deposition[J]. Coatings, 2017, 7(8): 118.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Antireflection coatings for strongly curved glass lenses by atomic layer deposition[J]. Coatings, 2017, 7(8): 118.

    Pfeiffer K, Schulz U, Tünnermann A, et al. Antireflection coatings for strongly curved glass lenses by atomic layer deposition[J]. Coatings, 2017, 7(8): 118.

[21] Szeghalmi A, Helgert M, Brunner R, et al. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings[J]. Applied Optics, 2009, 48(9): 1727-1732.

    Szeghalmi A, Helgert M, Brunner R, et al. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings[J]. Applied Optics, 2009, 48(9): 1727-1732.

    Szeghalmi A, Helgert M, Brunner R, et al. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings[J]. Applied Optics, 2009, 48(9): 1727-1732.

    Szeghalmi A, Helgert M, Brunner R, et al. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings[J]. Applied Optics, 2009, 48(9): 1727-1732.

    Szeghalmi A, Helgert M, Brunner R, et al. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings[J]. Applied Optics, 2009, 48(9): 1727-1732.

[22] Li Y H, Shen W D, Zhang Y G, et al. Precise broad-band anti-refection coating fabricated by atomic layer deposition[J]. Optics Communications, 2013, 292: 31-35.

    Li Y H, Shen W D, Zhang Y G, et al. Precise broad-band anti-refection coating fabricated by atomic layer deposition[J]. Optics Communications, 2013, 292: 31-35.

    Li Y H, Shen W D, Zhang Y G, et al. Precise broad-band anti-refection coating fabricated by atomic layer deposition[J]. Optics Communications, 2013, 292: 31-35.

    Li Y H, Shen W D, Zhang Y G, et al. Precise broad-band anti-refection coating fabricated by atomic layer deposition[J]. Optics Communications, 2013, 292: 31-35.

    Li Y H, Shen W D, Zhang Y G, et al. Precise broad-band anti-refection coating fabricated by atomic layer deposition[J]. Optics Communications, 2013, 292: 31-35.

[23] Gabriel N T, Talghader J J. Optical coatings in microscale channels by atomic layer deposition[J]. Applied Optics, 2010, 49(8): 1242-1248.

    Gabriel N T, Talghader J J. Optical coatings in microscale channels by atomic layer deposition[J]. Applied Optics, 2010, 49(8): 1242-1248.

    Gabriel N T, Talghader J J. Optical coatings in microscale channels by atomic layer deposition[J]. Applied Optics, 2010, 49(8): 1242-1248.

    Gabriel N T, Talghader J J. Optical coatings in microscale channels by atomic layer deposition[J]. Applied Optics, 2010, 49(8): 1242-1248.

    Gabriel N T, Talghader J J. Optical coatings in microscale channels by atomic layer deposition[J]. Applied Optics, 2010, 49(8): 1242-1248.

[24] 卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Journal of Optics, 2011, 4(2): 188-195.

    Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Journal of Optics, 2011, 4(2): 188-195.

    Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Journal of Optics, 2011, 4(2): 188-195.

    Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Journal of Optics, 2011, 4(2): 188-195.

    Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Journal of Optics, 2011, 4(2): 188-195.

[25] Ritala M, Leskelä M, Nykänen E, et al. Growth of titanium dioxide thin films by atomic layer epitaxy[J]. Thin Solid Films, 1993, 225(1/2): 288-295.

    Ritala M, Leskelä M, Nykänen E, et al. Growth of titanium dioxide thin films by atomic layer epitaxy[J]. Thin Solid Films, 1993, 225(1/2): 288-295.

    Ritala M, Leskelä M, Nykänen E, et al. Growth of titanium dioxide thin films by atomic layer epitaxy[J]. Thin Solid Films, 1993, 225(1/2): 288-295.

    Ritala M, Leskelä M, Nykänen E, et al. Growth of titanium dioxide thin films by atomic layer epitaxy[J]. Thin Solid Films, 1993, 225(1/2): 288-295.

    Ritala M, Leskelä M, Nykänen E, et al. Growth of titanium dioxide thin films by atomic layer epitaxy[J]. Thin Solid Films, 1993, 225(1/2): 288-295.

沐雯, 沈伟东, 杨陈楹, 郑晓雯, 王震, 袁华新, 袁文佳, 章岳光. 基于原子层沉积技术的石英管表面减反射膜的制备[J]. 光学学报, 2019, 39(3): 0324001. Wen Mu, Weidong Shen, Chenying Yang, Xiaowen Zheng, Zhen Wang, Huaxin Yuan, Wenjia Yuan, Yueguang Zhang. Preparation of Anti-Reflection Coatings on Quartz Tube Surfaces Based on Atomic Layer Deposition[J]. Acta Optica Sinica, 2019, 39(3): 0324001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!