中国激光, 2015, 42 (3): 0303012, 网络出版: 2015-02-03   

光波导端面的准分子激光刻蚀技术研究 下载: 564次

Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face
贾娜娜 1,2,*邓传鲁 1,2庞拂飞 1,2顾鑫 1,2王廷云 1,2
作者单位
1 上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
2 上海大学通信与信息工程学院, 上海 200072
摘要
面向光印刷互连背板的应用需求,提出基于准分子激光消融原理对光波导的刻蚀技术进行研究,在背板上任意位置获得光波导端面实现光耦合。采用193 nm 波长的准分子激光作为光源,通过方形掩模孔径投影在互连背板光波导上,研究了激光能量、激光脉冲次数与刻蚀深度、端面粗糙度等参量之间关系,通过刻蚀参数的优化,刻蚀后端面光耦合损耗增加量约1.3 dB。
Abstract
Based on the excimer laser ablation principle, etching technique for achieving optical waveguide end face is proposed for application requirements of optical printed circuit backplane interconnect. With the laser etching technique, optical coupling end face can be fabricated at any position on optical printed circuit backplane. An excimer laser with the wavelength of 193 nm is used as the ablation light source. The laser beam is projected onto the optical waveguide for etching through a square aperture mask. The relationship among the laser energy, laser pulse times and etching depth, surface roughness has been studied experimentally. After optimizing the etching parameters, the coupling loss increase of the waveguide end face is approximate 1.3 dB after the etching process.
参考文献

[1] Schmidtke K, Flens F, Worrall A, et al.. 960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array (June 2013)[J]. J Lightwave Technol, 2013, 31(24): 3970-3975.

[2] Taubenblatt M A. Optical interconnects for high-performance computing[J]. J Lightwave Technol, 2012, 30(4): 448-457.

[3] 李荣玲, 商慧亮, 雷雨, 等. 高速可见光通信中关键使能技术研究[J]. 激光与光电子学进展, 2013, 50(5): 050003.

    Li Rongling, Shang Huiliang, Lei Yu, et al.. Design research of key enabling technologies for high-speed visible-light communication[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050003.

[4] 侯培培, 职亚楠, 孙建锋, 等. Crossbar光交换网络[J]. 激光与光电子学进展, 2013, 50(1): 010003.

    Hou Peipei, Zhi Yanan, Sun Jianfeng, et al.. Crossbar optical switching network[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010003.

[5] Zhang X, Hosseini A, Lin X, et al.. Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and boardlevel optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401115.

[6] Luo F, Cao M, Zhou X, et al.. 3D optical interconnect mesh network for on-board parallel multiprocessor system based on EOPCB [C]. SPIE, 2007, 6795: 67954V.

[7] Jin W, Chiang K S, Lor K P, et al.. Industry compatible embossing process for the fabrication of waveguide-embedded optical printed circuit boards[J]. J Lightwave Technol, 2013, 31(24): 4045-4050.

[8] Bamiedakis N, Penty R V, White I H. Compact multimode polymer waveguide bends for board-level optical interconnects[J]. J Lightwave Technol, 2013, 31(14): 2370-2375.

[9] Doany F E, Schow C L, Baks C W, et al.. 160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOSbased transceivers[J]. IEEE Transactions on Advanced Packaging, 2009, 32(2): 345-359.

[10] Tan M R, Rosenberg P K, Mathai S, et al.. Low cost, injection molded 120 Gbps optical backplane[C]. Optical Fiber Communication Conference, Optical Society of America, 2011. PDPA4.

[11] Pitwon R C A, Hopkins K, Milward D, et al.. Passive assembly of parallel optical devices onto polymer-based optical printed circuit boards[J]. Circuit World, 2010, 36(4): 3-11.

[12] Baghsiahi H, Wang K, Kandulski W, et al.. Optical waveguide end facet roughness and optical coupling loss[J]. J Lightwave Technol, 2013, 31(16): 2959-2968.

[13] Q Xia, M Immonen, J Wu. Optical backplane demonstrator with 10 Gbps video transmission link on printed circuit board using optical waveguides[C]. International Microsystem Packaging Assembly and Circuits Technology Conference, 2013.

[14] Papakonstantinou I, Selviah D R, Pitwon R C A, et al.. Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs[J]. IEEE Transactions on Advanced Packaging, 2008, 31(3): 502-511.

[15] MICRO·CHEM. Developmental Products[OL]. http://www.microchem.com/Prod-LightLink.htm.[2014-12-19].

[16] Zakariyah S S. Laser ablation for polymer waveguide fabrication[J]. Micromachining Techniques for Fabrication of Micro and Nano Structures, 2012, 6(1): 109-130.

[17] 李育. 粗糙度测量中取样长度、评定长度的合理选用[J]. 东方电机, 2007, 35(4): 63-65.

    Li Yu. The reasonable choice of sample length and evaluation length in roughness measurement[J]. Dongfang Electrical Machine, 2007, 35(4): 63-65.

[18] 李伯奎. 三维粗糙度参数算术平均偏差与均方根偏差的规律研究[J]. 工具技术, 2008, 42(9): 107-110.

    Li Bokui. 3D roughness parameter arithmetic average deviation and root mean square deviation of law research[J]. Tool Engineering, 2008, 42(9): 107-110.

贾娜娜, 邓传鲁, 庞拂飞, 顾鑫, 王廷云. 光波导端面的准分子激光刻蚀技术研究[J]. 中国激光, 2015, 42(3): 0303012. Jia Nana, Deng Chuanlu, Pang Fufei, Gu Xin, Wang Tingyun. Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face[J]. Chinese Journal of Lasers, 2015, 42(3): 0303012.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!