强激光与粒子束, 2010, 22 (9): 2181, 网络出版: 2010-09-21   

低亚表面损伤石英光学基底的加工和检测技术

Fabrication and detection technique of fused silica substrate with extremely low subsurface damage
马彬 1,2,3,*沈正祥 1,2,3张众 1,2,3贺鹏飞 1,2,3季一勤 1,2,3刘华松 1,2,3刘丹丹 1,2,3王占山 1,2,3
作者单位
1 同济大学 精密光学工程技术研究所, 上海 200092
2 同济大学 航空航天与力学学院, 上海 200092
3 天津津航技术物理研究所 天津市薄膜光学重点实验室, 天津 300192
摘要
制备低亚表面损伤的超光滑光学基底,是获得高损伤阈值薄膜的前提条件。针对石英材料在不同加工工序中引入亚表面损伤层的差异,首先利用共焦显微成像结合光散射的层析扫描技术,对W10和W5牌号SiC磨料研磨后的亚表面缺陷进行了检测,讨论了缺陷尺寸与散射信号强度、磨料粒径与损伤层深度间的对应关系;同时,采用化学腐蚀处理技术对抛光后样品的亚表面形貌进行了刻蚀研究,分析了化学反应生成物和亚表面缺陷对刻蚀速率的影响、不同深度下亚表面缺陷的分布特征,以及均方根粗糙度与刻蚀深度间的联系。根据各道加工工艺的不同采用了相应的亚表面检测技术,由此来确定下一道加工工序,合理的去除深度,最终获得了极低亚表面损伤的超光滑光学基底。
Abstract
The supersmooth optical substrate with extremely low subsurface damage is essential to obtain high laser damage threshold films. In view of the difference in subsurface morphology, the laser confocal microscope technique combined with light scattering method is firstly used to detect the subsurface defects of fused silica substrates ground by brand W10 and W5 SiC abrasive particles, and the relation between the defects size and the scattering intensity are discussed. Then chemical etching method is introduced to expose the inner features at arbitrary depth for the polished sample, the influences of chemical resultant and redeposition layer on etching rate are analyzed, and the distribution and depth of damage layer are estimated. Furthermore, the relation between RMS roughness and etching depth is given. The results show that, to fabricate high quality optical substrates, suitable subsurface detection technique corresponding to different optical process should be adopted to determine reasonable removal thickness.
参考文献

[1] Cmapbell J H,Hwaley-Fedder R A. NIF optical materials and fabrication technologies: An overview[C]//Proc of SPIE.2004,5341: 84-101.

[2] Feit M D, Rubenchik A M. Influence of subsurface cracks on laser induced surface damage[C]//Proc of SPIE.2004,5273:264-272.

[3] Wong J, Ferriera J L, Lindsey E F, et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J].Journal of Non-Crystalline Solids,2006,352:255-272.

[4] Salleo A, Genin F, Yoshiyama J. Laser-induced damage of fused silica initiated at scratches[C]//Proc of SPIE.1997,3047:987-999.

[5] Neauport J, Cormont P, Legros P, et al. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy[J].Optics Express,2009,17(15): 3543-3554.

[6] Fine K R, Garbe R, Gip T, et al. Non-destructive real-time direct measurement of subsurface damage[C]//Proc of SPIE.2005,5799:105-110.

[7] 陈宁, 张清华, 许乔, 等. K9基片的亚表面损伤探测及化学腐蚀处理技术研究[J]. 强激光与粒子束, 2005,17(9):1289-1293. (Chen Ning, Zhang Qinghua, Xu Qiao, et al. Studies on subsurface damage detection and wet-etching process of K9 optics.High Power Laser and Particle Beams,2005,17(9):1289-1293)

[8] 徐世珍, 吕海兵, 田东斌, 等. 酸蚀深度对熔石英三倍频激光损伤阈值的影响[J]. 强激光与粒子束, 2008,20(5):760-764.(Xu Shizhen, Lü Haibing, Tian Dongbin, et al. Effects of acid etching depth on 355 nm laser induced damage threshold of fused silica.High Power Laser and Particle Beams,2008,20(5):760-764)

[9] 项震, 聂传继, 葛剑虹, 等. 光学元件亚表面缺陷结构的蚀刻消除[J]. 强激光与粒子束, 2007,19(3):373-376.(Xiang Zhen, Nie Chuangji, Ge Jianhong, et al. Eliminating of subsurface damage structure.High Power Laser and Particle Beams,2007,19(3): 373-376)

马彬, 沈正祥, 张众, 贺鹏飞, 季一勤, 刘华松, 刘丹丹, 王占山. 低亚表面损伤石英光学基底的加工和检测技术[J]. 强激光与粒子束, 2010, 22(9): 2181. Ma Bin, Shen Zhengxiang, Zhang Zhong, He Pengfei, Ji Yiqin, Liu Huasong, Liu Dandan, Wang Zhanshan. Fabrication and detection technique of fused silica substrate with extremely low subsurface damage[J]. High Power Laser and Particle Beams, 2010, 22(9): 2181.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!