红外与激光工程, 2018, 47 (9): 0921001, 网络出版: 2018-10-06  

HfO2-SiO2混合膜力学性能

Mechanical properties of HfO2-SiO2 mixed films
作者单位
1 同济大学 物理科学与工程学院 精密光学工程技术研究所, 上海 200092
2 同济大学 先进微结构材料教育部重点实验室, 上海 200092
3 成都精密光学工程研究中心, 四川 成都 610041
4 天津津航技术物理研究所 天津市薄膜光学重点实验室, 天津 300308
5 哈尔滨工业大学 光电子技术研究所 可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150001
摘要
利用离子辅助电子束双源共蒸发工艺方法, 制备了SiO2掺杂含量分别为0、13%、20%、30%、40%和100%的六组HfO2-SiO2混合膜。采用纳米压痕法测量了不同组分混合膜的杨氏模量和硬度, 并研究了混合膜杨氏模量和硬度随SiO2含量增长的变化规律。结果显示, 随着SiO2含量增加, 混合膜杨氏模量和硬度均减小, 双组分复合材料并联模型可以较好地拟合杨氏模量随混合膜SiO2含量变化关系。为了解释混合膜力学性能随SiO2含量变化规律, 对混合膜进行了XRD测试, 研究了混合膜微观结构与杨氏模量和硬度的关系, 发现结晶对硬度影响显著, 对杨氏模量影响较小; 用Zygo干涉仪测量了样品的面形, 获得了薄膜残余应力随SiO2含量的变化规律, 表明SiO2掺杂能减小HfO2薄膜压应力。
Abstract
Six groups of HfO2-SiO2 mixed films with SiO2 content about 0, 13%, 20%, 30%, 40% and 100% were prepared using ion-assisted e-beam co-evaporation process separately. The Young′s modulus and hardness of the mixed films with different SiO2 content were measured through nanoindentation, and the variation of Young′s modulus and hardness as a function of SiO2 content were studied. The results show that with the increase of SiO2 content, both the Young′s modulus and hardness of the mixed films decrease, and the variation of Young′s modulus of mixed films as a function of SiO2 content can be well fitted by iso-stress model of a two-component composite. In order to illustrate the relation between SiO2 content and mechanical properties of the mixed films, the microstructure of the mixed films was analyzed by XRD, and the influence of microstructure on Young′s modulus and hardness were studied. It was found that the crystallization of thin films had major impact on hardness, but little influence on Young′s modulus. The residual stresses of the mixed films were calculated using the data of surface shape measured by Zygo interferometer, the variation of stress as a function of SiO2 content was obtained, and a reduction of compressive stress with the SiO2 doped in HfO2 was observed.
参考文献

[1] Gallais L, Capoulade J, Natoli J Y, et al. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering[J]. Applied Optics, 2008, 47(13): 107-113.

[2] Zhang L, Cheng X, Zhang J, et al. Characterization of grain sizes and roughness of HfO2 single layers[J]. Applied Optics, 2017, 56(4): 24-29.

[3] Al Asmar R, Juillaguet S, Ramonda M, et al. Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique[J]. Journal of Crystal Growth, 2005, 275(3-4): 512-520.

[4] Chen J S, Chao S, Kao J S, et al. Mixed films of TiO2-SiO2 deposited by double electron beam coevaporation[J]. Applied Optics, 1996, 35(1): 90-96.

[5] Mende M, Schrameyer S, Ehlers H, et al. Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings[J]. Applied Optics, 2013, 52(7): 1368-1376.

[6] Mazur M, Poniedzialek A, Kaczmarek D, et al. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system[J]. Applied Surface Science, 2017, 421: 170-178.

[7] Stenzel O, Wilbrandt S, Schurmann M, et al. Mixed oxide coatings for optics[J]. Applied Optics, 2011, 50(9): 69-74.

[8] Xing H, Zhu M, Chai Y, et al. Study of hafina-silica mixed coatings with different compositions prepared by E-beam co-evaporation[C]//SPIE, 2015, 9532: 1-6.

[9] Kamble N M, Tokas R B, Biswas A, et al. Determination of the optical constants of HfO2-SiO2 composite thin films through reverse fitting of transmission spectra[J]. Vacuum, 2011, 86(4): 422-428.

[10] Jena S, Tokas R B, Kamble N M, et al. Optical properties and laser damage threshold of HfO2-SiO2 mixed composite thin films[J]. Applied Optics, 2014, 53(5): 850-860.

[11] Zhang J, Bu X, Ma B, et al. Research on the mechanical stability of high laser resistant coatings on lithium triborate crystal[J]. Applied Optics, 2017, 56(4): 117-122.

[12] Abernathy M R, Hough J, Martin I W, et al. Investigation of the Young′s modulus and thermal expansion of amorphous titania-doped tantala films[J]. Applied Optics, 2014, 53(15): 3196-3202.

[13] Yang C, Pham J. On the fracture toughness measurement of thin film coated silicon wafers[J]. Silicon, 2015, 7(1): 27-30.

[14] Ohring M, Materials Science of Thin Films[M]. San Diego: Academic Press, 2001.

[15] Tsai R Y. Hardness of TiO2-MgF2 mixed films prepared by reactive ion-assisted deposition[J]. Applied Physics Letters, 1994, 65(1): 37-39.

[16] Venkatachalam D K, Bradby J E, Saleh M N, et al. Nanomechanical properties of sputter-deposited HfO2 and HfxSi1-xO2 thin films[J]. Journal of Applied Physics, 2011, 110(4): 043527.

[17] Niu X, Jiao H, Bao G, et al, HfO2-SiO2 mixed film deposited by ion-assisted deposition coevaporation[C]//SPIE, 2017, 10447: 9.

[18] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.

[19] Tamulevi 觬ius S. Stress and strain in the vacuum deposited thin films[J]. Vacuum, 1998, 51(2): 127-139.

[20] Mehrotra K, Oliver J B, Lambropoulos J C. Nano-indentation of single-layer optical oxide thin films grown by electron-beam deposition[J]. Applied Optics, 2015, 54(9): 2435-2440.

[21] Vargas A L M, Ribeiro F D, Hubler R. Changes in the Young′s modulus of hafnium oxide thin films[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2015, 365(Part A): 362-366.

[22] Tsai R Y, Hua M Y. Microstructural, optical, and mechanical properties of reactive electron beam coevaporated TiO2-MgF2 composite films[J]. Applied Optics, 1996, 35(25): 5073-5079.

[23] Pond B J, Debar J I, Carniglia C K, et al. Stress reduction in ion beam sputtered mixed oxide films[J]. Applied Optics, 1989, 28(14): 2800-2805.

卜笑庆, 张锦龙, 潘峰, 刘华松, 樊荣伟. HfO2-SiO2混合膜力学性能[J]. 红外与激光工程, 2018, 47(9): 0921001. Bu Xiaoqing, Zhang Jinlong, Pan Feng, Liu Huasong, Fan Rongwei. Mechanical properties of HfO2-SiO2 mixed films[J]. Infrared and Laser Engineering, 2018, 47(9): 0921001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!