应用光学, 2019, 40 (1): 21, 网络出版: 2019-04-02   

基于自适应SRUKF的无人机位姿预测方法

Adaptive square-root unscented Kalman filter for position and pose prediction of UAV
作者单位
空军工程大学 航空航天工程学院, 陕西 西安 710038
摘要
针对无人机自主导航的实时性差、精度低且对时变噪声的鲁棒性弱的问题, 建立了机器视觉和惯性导航相融合的组合导航系统, 并提出了一种自适应平方根无迹卡尔曼滤波(adaptive square-root unscented kalman filter, ASRUKF)算法。该算法通过观测值与估计值残差的Mahalanobis距离时刻修正系统噪声协方差, 再与采用最小偏度采样的SRUKF算法相融合, 从而达到时变噪声自适应抑制, 滤波快速且对噪声鲁棒性高的效果。仿真结果表明, 相比标准SRUKF, ASRUKF计算耗时减少约38.8%, 位移、速度和姿态角预测精度分别提高超过4倍和6倍, 且对于时变噪声鲁棒性更强。
Abstract
To improve the real-time performance,the accuracy and the robustness of the unmanned aerial vehicle (UAV) autonomous navigation system under time-varying noise circumstance, an integrated navigation system of machine vision and inertial guidance was established, and an adaptive square-root unscented Kalamn filter (ASRUKF) was proposed. By introducing the Mahalanobis distance of the residual between the observed and predicted values to the minimal skew sampling square-root Kalman filter, the new algorithm can restrain the system noise adaptively, compute faster and be more robust to noise. The simulation results show that compared with the SRUKF, the ASRUKF is more robust to noise, and the computation time is reduced by about 38.8%, the forecast accuracy of displacement, velocity and attitude angle increases by more than 4 times, 4times, 6 times, respectively.
参考文献

[1] NATASSYA B F, SILVA D , DANIEL B W, et al. Performance evaluation of the extended kalman filter and unscented kalman filte[C]//IEEE International Conference on Unmanned Aircraft systems (IUAS), USA: IEEE, 2015.

[2] MARCONATO E A, RODRIGUES D, CHAVES A A , et al. Unmanned aerial vehicles & service-oriented architecture, Larissa and knowledge based framework’s first study[C]//The Tenth International Conference on Autonomic and Autonomous Systems (ICAS), USA: IEEE,2014.

[3] HIRASAWA R,NAKAJIMA Y, MASAKI T. Receding-horizon unscented kalman filter using successive unscented transformation for spacecraft attitude estimation[C]// Florida: AIAA Guidance, Navigation, and Control Conference, AIAA, 2015.

[4] WANG Yidi , SUN Shouming , LI Li, Adaptively robust unscented kalman filter for tracking a maneuvering Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1696-1701.

[5] SWEE H T, TAKAAKI K, TORU N, et al. Unscented kalman filter for position estimation of UAV by using image information[C]. USA: SICE Annual Conference, 2015.

[6] 符毅, 孔星炜, 董新民, 等. 基于改进UKF的加油机位姿预测方法[J], 应用光学, 2016,37(6): 860-865.

    FU Yi, KONG Xingwei, DONG Xinmin, et al, Tanker pose prediction via modified unscented kalman filter[J]. Journal of Applied Optics, 2016, 37(6): 860-865.

[7] 石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用[J]. 自动化学报, 2011, 37(6): 755-759.

    SHI Yong, HAN Chongzhao. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 37(6): 755-759.

[8] JONATHAN K, DANIEL J K, DIETER F, et al. GP-UKF: unscented kalman filters with gaussian process prediction and observation models[C]//CA, USA San Diego: in the Proceedings of the IEEE/RSJ International Intelligent Robots and Systems San Diego, 2007.

[9] 李鹏, 宋申民, 陈兴林, 自适应平方根无迹卡尔曼滤波算法[J]. 控制理论与应用, 2010, 27(2): 143-146.

    LI Peng, SONG Shenmin, CHEN Xinglin, Adaptive square-root unscented Kalman filter algorithm [J]. Control Theory & Application, 2010, 27(2): 143-146.

[10] 赵辉, 周欢, 翁兴伟, 等. 传感器故障条件下的UKF算法[J]. 控制与决策, 2015, 30(11): 2025-2032.

    ZHAO Hui, ZHOU Huan, WENG Xingwei, et al. Adaptive UKF algorithm under condition of sensor faults [J]. Control and Decision, 2015, 30(11): 2025-2032.

[11] 李丹, 刘建业, 熊智, 等. 基于最小偏度采样的卫星自主导航SRUKF算法[J]. 南京航空航天大学学报, 2009, 41(1): 54-58.

    LI Dan, LIU Jianye, XIONG Zhi, et al. Square root unscented kalman filter for satellite autonomous navigation system based on minimal simplex skew transformation[J]. Journal of NanJing University of Aeronautics & Astronautics, 2009, 41 (1): 54-58.

[12] JAMSHAID A, RASHEEQ M, UllAH B M. Performance comparison among some nonlinear filters for a low cost SINS/GPS integrated solution[J]. Springer Nonlinear Dyn , 2010, 61(1): 491-502.

[13] 潘泉, 杨峰, 叶亮, 等. 一类非线性滤波器-UKF综述[J]. 控制与决策, 2005, 20(5): 481-494.

    PAN Quan, YANG Feng, YE Lang, et al. Survey of a kind of nonlinear Filters-UKF[J]. Control and Decision, 2005, 20(5): 481-494.

[14] SONG Qi, HAN Jianda.An adaptive UKF algorithm for the state and parameter of a mobile robot[J]. Acta Automatica Sinica, 2008, 34(1): 72-79.

[15] 孙枫, 唐李军. Cubature卡尔曼滤波器与Unscented卡尔曼滤波估计精度比较[J].控制与决策,2013,28(2): 303-312.

    SUN Feng, TANG Lijun. Estimation precision comparison of cubature kalman filter and unscented kalman filter[J]. Control and Decision, 2013, 28(2): 303-312.

符毅, 孔星炜, 董新民. 基于自适应SRUKF的无人机位姿预测方法[J]. 应用光学, 2019, 40(1): 21. FU Yi, KONG Xingwei, DONG Xinmin. Adaptive square-root unscented Kalman filter for position and pose prediction of UAV[J]. Journal of Applied Optics, 2019, 40(1): 21.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!